Praktica FX 2

aka Praktica FX 3

35mm MF film SLR camera

Specification

Production details:
Announced:1956
System: Contax/Praktica (1949)
Format:
Maximum format:35mm full frame
Film type:135 cartridge-loaded film
Mount and Flange focal distance:M42 [45.5mm]
Shutter:
Type:Focal-plane
Model:Mechanical
Speeds:1/2 - 1/500 + B
Exposure:
Exposure metering:None
Exposure modes:Manual
Physical characteristics:
Weight:620g
Dimensions:150x80x40mm

Manufacturer description #1

NOW AVAILABLE... THE NEW 1956 Praktica FX model 2

The new 1956 Praktica FX2, with its single-lens reflex system, is a significant advancement in photography, and a delight to photographers the world over.

The new 1956 Praktica FX2 places at your command an exclusive array of precision features including the newly designed ultra-modern Push-Button finder to give fast and accurate focusing, and brilliant images on the finder ground glass. For close-up work and photomicrography, a new powerful "hide-away" magnifier is provided - an invaluable aid for extra-critical focusing. Optional, for action and sports, a new eye-level prismatic finder slips snugly and compactly into the new Viewfinder.

LOOK AT THESE PRAKTICA FX2 FEATURES:

  • Original factory synchronization for regular and electronic flash.
  • Wide range of instantaneously interchangeable wide angle and telephoto lenses from 28-mm to 800-mm.
  • Newly designed ultra-modern push-button waist-level reflex viewfinder to give fast and accurate focusing.
  • Newly designed eye-level prismatic view finder assures a vertically and horizontally correct picture with sides unreversed*.
  • Focal plane shutter with ten settings... 1/500, 1/200, 1/100, 1/50, 1/25, 1/10, 1/5, 1/2 second and Bulb, and new additional speed equal to 1/40 for electronic strobe.
  • Close-ups and Microphotography without special viewing attachments.
  • Built-in powerful hide-away magnifier for critical focusing.
  • Coupled film transport and shutter cocking.
  • Double exposure prevention... intentional double exposures possible.
  • Back removes quickly for easy loading.

* optional, at additional cost.

Manufacturer description #2

FIRST WITH INTERNAL AUTOMATIC IRIS IN A POPULAR-PRICED SINGLE LENS REFLEX

THE NEW 1957 Praktica FX2

Here's the most exciting news of the year for the photographic fan who's yearned for a superb automatic single-lens reflex camera in the popular-priced range.

Now, the popular-priced Praktica FX2 - already established as the best dollar-for-dollar value in the fine camera field - comes to you in a brand-new 1957 model with internally-coupled automatic lenses. These permits you to focus at full aperture, for maximum light. Then, when you press the shutter release, the iris diaphragm automatically closes to the selected aperture and the picture is simultaneously taken. This feature is usually found in higher-priced cameras only.

With the new, 1957 Praktica FX2, the whole wide world of photography is within your grasp. Fine portrait work, carefully composed scenic shots, fast-action pictures. You get all the advantages of 35-mm. photography - easy handling, speed and film economy. You get the unique benefits of single-lens photography - ground glass focusing that delivers ideal control of composition and lighting - through-the-lens visibility - freedom from parallax error - a perfect preview of the picture you're going to get!

No Other Comparably Priced Camera Gives You All These Features

  • Internally automatically-coupled iris diaphragm
  • Lens interchangeability
  • 1/500 to 1/2 second speeds - Focal Plane shutter
  • Built-in waist-level viewfinder with achromatic magnifier
  • Accepts accessory Prismatic eye-level viewfinder
  • Synchronized for regular and electronic flash
  • Coupled film transport, shutter cocking and frame counting.

Manufacturer description #3

The miniature reflex camera "Praktica FX 2", a masterpiece of German craftsmanship, discloses to the amateur and professional photographer the extremely versatile and wondrous territories of photography.

The advantages of the single-lens reflex camera system become particularly obvious in the Praktica FX 2. Already before the exposure, the subject is visible, free from parallax error, in the ground-glass image, making it possible to predetermine depth of field and picture composition with utmost accuracy.

Interchangeable lenses of various focal lengths in the Praktica FX 2, some of them with automatic diaphragm, open up a wide range of applicability for tele-photo and close-up exposures.

To complete the finder system, a supplementary reversing prism can be inserted into the finder hood, revealing an upright, laterally correct image.

***

Technical Data

Lenses: 35 to 500 mm focal length with speeds ranging from f/1.5 to f/8. All lenses are coated.

Shutter: Focal-plane shutter, 1/2 to 1/500 sec. and B, synchronized for electronic and regular flash.

Finder System: Reflex finder with image field lens and magnifier for critical focusing (free from parallax). Built-in sports finder. Insertable reversing prism.

Film Transport: Coupled with shutter wind, no unintentional double exposures or blanks.

Manufacturer description #4

PRAKTICA FX2 allowed a pentaprism to be inserted into the reflex finder hood for eye level viewing. This model introduced semi-automatic aperture setting and the latest version had fully automatic iris control. This latter was offered in some countries as the Praktica FX3. The latest version of the Praktica F.X2 (dot between the F and X!) had, in addition to X synchronization, also the now international standard F synchronization for flash bulbs.

Manufacturer description #5

The all-new Praktica automatic features an amazing, fool-proof mechanism - found up to now only in high-priced cameras. It provides ultra-bright, razor-sharp focusing at maximum lens aperture and then automatically closes the lens to any previously selected aperture when you press the shutter release button. It eliminates over-exposed pictures because the photographer forgot to stop the camera down to the proper aperture after focusing. It eliminates fumbling with manual-type lenses.

25 other luxury features make the Praktica automatic the most desirable 35mm Single-lens Reflex Camera in its price class!

  • Accepts All lenses - Standard, Pre-set and Automatic
  • Through-the-Iens Reflex Focusing
  • New "Scoop" Push-button Viewfinder
  • Direct-vision Sportsfinder
  • Accepts Accessory Prismatic Eye-level Viewfinder
  • New Hide-away Color-corrected 6-power Magnifier
  • Focal-plane Shutter with 10 Settings
  • Coupled Film Transport and Shutter Setting
  • Automatic Exposure Counter
  • Interchangeable Lenses
  • Internal Flash Synchronization
  • Special Shutter Setting for Electronic Flash
  • Double Exposure Prevention
  • Intentional Double Exposure
  • Engraved Depth-of-field Scale
  • Engraved Distance Scale
  • Built-in Metal Neckstrap lugs
  • Handy Front-located Shutter Release
  • Cable Release Socket with Standard Thread
  • Tripod Socket with Standard 1/4 x 20 American Thread
  • Removable Back with "Snap-on" lock
  • Compact- 6"x3"x3"
  • High-precision Design and Manufacture
  • Light - Weighs Only 24 Ounces without Lens
  • Accepts a Host of Custom-crafted Accessories

INTERNAL COUPLING FOR LENSES WITH AUTOMATIC DIAPHRAGMS. Take your choice of three world-famous coated lenses having automatic diaphragms. Both are especially designed for use with the Praktica INTERNAL automatic coupling. When the shutter release is pressed, the new internal mechanism swiftly and automatically closes the lens diaphragm down to a pre-selected stop and simultaneously trips the shutter. There is no external apparatus, no additional strain or pressure on the shutter release.

THROUGH-THE-LENS REFLEX FOCUSING permits you to preview your subject in the viewfinder through the same lens that is used for taking the picture. There can be no parallax error of any kind. You can inspect the subject for color and composition in detail, focus with razor-sharp accuracy and observe the depth-of-field. When the shutter is released, the image is registered on the film exactly as you see it in the viewfinder. The Praktica automatic Reflex Focusing System is ideal for candid shots, sports, portraits, news, industrial, medical, dental, educational and scientific photography.

"SCOOP" PUSH-BUTTON WAIST-LEVEL VIEWFINDER snaps into viewing position to give a brilliant, upright image on the ground glass, free of reflections and interference from overhead light. You can sight in any direction - in either horizontal or vertical format.

HIDE-AWAY COLOR-CORRECTED 6-POWER MAGNIFIER snaps into place directly over the center of the ground glass with the flip of a tab. It provides for extra-critical focusing and is an invaluable aid in close-ups and photomicrography.

ACCESSORY PRISMATIC EYE-LEVEL VIEWFINDER, available as additional equipment, slips into place easily and swiftly over the camera's regular viewfinder. It provides an upright, unreversed image and allows the photographer to follow action. It is particularly useful in sports and action photography.

DIRECT-VISION SPORTSFINDER permits direct viewing of subject for sports and action shots.

FOCAL PLANE SHUTTER provides shutter settings of 1/500, 1/200, 1/100, 1/50, 1/25, 1/10, 1/5, 1/2 second and Bulb, plus a special setting of 1/40 second for electronic flash. All shutter speeds, fast and slow, are set from a dual-control dial on the top of the camera.

COUPLED FILM TRANSPORT AND SHUTTER SETTING permits taking picture after picture with great rapidity. A single knob winds the shutter, positions the mirror, advances the film and sets the automatic exposure counter.

DOUBLE EXPOSURE PREVENTION is built into the Praktica automatic Film-Advance-and-Shutter-Set system. Intentional double exposures can be made quickly and easily for such uses as trick effects, titling for slides, and so on.

INTERCHANGEABLE LENSES. The Praktica automatic features a screw-in lens mount which permits swift interchangeability of lenses. A wide variety of telephoto and wide angle lenses are available to meet every photographic need.

INTERNAL FLASH SYNCHRONIZATION. The Praktica automatic features internal flash synchronization with two flash outlets on the front of the camera next to the lens. The lower outlet is for standard focal plane flashbulbs, the upper outlet is for electronic flash units. A special shutter setting of 1/40 second is provided for electronic flash.

ENGRAVED SCALES. All Praktica lenses have engraved scales for Depth-of-Field and distance in both feet and meters.

BUlLT-IN LUGS accept Praktica accessory flexible metal neck-chains.

SHUTTER RELEASE is located on the top part of the camera next to the lens and has a cable release socket threaded for standard tips.

TRIPOD SOCKET is located on the bottom of the camera and accepts standard 1/4 x 20 American tripod screws.

REMOVABLE BACK makes loading simple. New positive-action snap-on lock quickly secures back on camera.

COMPACT and LIGHT. Camera is only 6" long, 3" high and 3" deep, weighs only 24 ounces without the lens.

SIMPLICITY OF DESIGN makes operation a miracle of ease. High precision engineering and manufacture assures a lifetime of trouble-free operation.

From the editor

Along with the Contax F, released in the same year 1956, it was the world's first 35mm SLR camera with internal automatic aperture stop-down but without instant-return mirror.

Only 13,490 units were produced from February 1956 to June 1956. This was a version with single coaxial flash socket.

Another 34,062 units were produced from June 1956 to February 1958. This was a version with two coaxial flash sockets.

For export, a version with two coaxial flash sockets was produced in 25,790 units under the name "Praktica FX 3".

***

There were also "F.X 2" and "FX 2." versions with a slightly modified F synchronization.

Only 29,110 units were produced from March 1958 to June 1959.

For export, these camera were produced in 19,971 units under the names "F.X 3" or "FX 3." from March 1958 to June 1959.

Similar cameras (84)

35mm full frame • Manual focus • Film • Singe-lens reflex • M42 mount

Model Shutter Metering Modes Year
Asahi Pentax
aka Tower 26
M, 1/500 -- M 1957
Asahi Pentax ES
aka Asahi Pentax Electro Spotmatic
aka Honeywell Pentax ES
E, 1/1000 TTL • OA AM 1971
Asahi Pentax ES II
aka Honeywell Pentax ES II
E, 1/1000 TTL • OA AM 1973
Asahi Pentax K
aka Tower 29
M, 1/1000 -- M 1958
Asahi Pentax S
aka Tower 26
M, 1/500 -- M 1958
Asahi Pentax S1
aka Honeywell Heiland Pentax H-1
aka Honeywell Pentax H1
M, 1/500 -- M 1961
Asahi Pentax S1a
aka Honeywell Heiland Pentax H-1a
aka Honeywell Pentax H1a
M, 1/500 -- M 1962
Asahi Pentax S2
aka Honeywell Heiland Pentax H-2
aka Honeywell Pentax H2
M, 1/1000 -- M 1959
Asahi Pentax S3
aka Honeywell Heiland Pentax H-3
aka Honeywell Pentax H3
M, 1/1000 -- M 1961
Asahi Pentax Spotmatic
aka Honeywell Pentax Spotmatic
M, 1/1000 TTL • WA M 1964
Asahi Pentax Spotmatic F
aka Honeywell Pentax Spotmatic F
M, 1/1000 TTL • OA M 1973
Asahi Pentax Spotmatic II M, 1/1000 TTL • WA M 1971
Asahi Pentax Spotmatic SL
aka Honeywell Pentax Spotmatic SL
M, 1/1000 -- M 1968
Asahi Pentax Spotmatic SP 1000
aka Honeywell Pentax Spotmatic SP 1000
M, 1/1000 TTL • WA M 1974
Asahi Pentax Spotmatic SP 500
aka Honeywell Pentax Spotmatic SP 500
M, 1/500 TTL • WA M 1971
Asahi Pentax SV
aka Honeywell Pentax H3v
M, 1/1000 -- M 1962
Cosina Voigtlander Bessaflex TM M, 1/2000 TTL • WA M 2003
Exa 1b
aka Exa 1c
M, 1/175 -- M 1977
Exakta Twin TL 42 M, 1/1000 TTL • WA M
Fujica AZ-1 E, 1/1000 TTL • OA AM 1977
Fujica ST601 M, 1/700 TTL • WA M 1975
Fujica ST605 M, 1/700 TTL • WA M 1976
Fujica ST605 II M, 1/700 TTL • OA M 1978
Fujica ST605N M, 1/700 TTL • WA M 1978
Fujica ST701 M, 1/1000 TTL • WA M 1970
Fujica ST705 M, 1/1500 TTL • OA M 1976
Fujica ST705W M, 1/1500 TTL • OA M 1978
Fujica ST801 M, 1/2000 TTL • OA M 1972
Fujica ST901 E, 1/1000 TTL • OA AM 1974
Honeywell Pentax Spotmatic IIa M, 1/1000 TTL • WA M 1971
Mamiya DSX 1000 M, 1/1000 TTL • OA M 1974
Mamiya DSX 1000B M, 1/1000 TTL • OA M 1975
Mamiya DSX 500 M, 1/500 TTL • OA M 1974
Mamiya MSX 1000 M, 1/1000 TTL • OA M 1974
Mamiya MSX 500 M, 1/500 TTL • OA M 1974
Mamiya/Sekor 1000 DTL M, 1/1000 TTL • WA M 1968
Mamiya/Sekor 1000 TL M, 1/1000 TTL • WA M 1966
Mamiya/Sekor 2000 DTL M, 1/2000 TTL • WA M 1969
Mamiya/Sekor 500 DTL M, 1/1000 TTL • WA M 1968
Mamiya/Sekor 500 TL M, 1/500 TTL • WA M 1966
Mamiya/Sekor CP
aka Mamiya/Sekor CWP
M, 1/1000 Window M 1964
Olympus FTL M, 1/1000 TTL • OA M 1970
Pentacon super M, 1/2000 TTL • OA M 1968
Petri PENTA M, 1/500 -- M 1959
Ricoh Auto TLS EE M, 1/1000 TTL • OA SM 1976
Ricoh Singlex II M, 1/1000 TTL • WA M 1976
Ricoh Singlex TLS M, 1/1000 TTL • WA M 1967
Ricoh SLX 500 M, 1/500 TTL • WA M 1975
Ricoh TLS 401 M, 1/1000 TTL • WA M 1970
Sigma Mark-I M, 1/1000 TTL • WA M 1975
Voigtlander VSL1 (TM)
aka Ifbaflex M 102
M, 1/1000 TTL • OA M 1974
Yashica Electro AX E, 1/1000 TTL • WA AM 1972
Yashica FFT M, 1/1000 TTL • WA M 1973
Yashica J-3 M, 1/500 Window M 1962
Yashica J-4 M, 1/500 Window M 1965
Yashica J-5 M, 1/1000 Window M 1964
Yashica J-7 M, 1/1000 Window M 1966
Yashica J-P M, 1/500 -- M 1964
Yashica Penta J
aka Yashica Reflex 35
M, 1/500 -- M 1961
Yashica TL M, 1/500 TTL • WA M 1968
Yashica TL Electro X E, 1/1000 TTL • WA M 1968
Yashica TL Electro X ITS E, 1/1000 TTL • WA M 1970
Yashica TL-E M, 1/500 TTL • WA M 1969
Yashica TL-Electro M, 1/1000 TTL • WA M 1972
Yashica TL-Super M, 1/1000 TTL • WA M 1966
Zeiss Ikon Icarex 35 (TM) M, 1/1000 -- M 1969
Zeiss Ikon Icarex 35S (TM) M, 1/1000 TTL • OA M 1969
Zeiss Ikon SL706 M, 1/1000 TTL • OA M 1971
Zenit-10 M, 1/500 Window M 1982
Zenit-11 M, 1/500 Window M 1982
Zenit-122[V] M, 1/500 TTL • WA M 1990
Zenit-12sd
aka Zenit-12xp
M, 1/500 TTL • WA M 1983
Zenit-15M M, 1/500 TTL • WA M
Zenit-16 M, 1/1000 TTL • OA M 1975
Zenit-18 E, 1/1000 TTL • OA AM 1980
Zenit-19 E, 1/1000 TTL • WA M 1979
Zenit-312m M, 1/500 TTL • WA M 1999
Zenit-412DX M, 1/500 TTL • WA M 2000
Zenit-412LS M, 1/500 TTL • WA M 2002
Zenit-E M, 1/500 Window M 1965
Zenit-EM M, 1/500 Window M 1972
Zenit-ET M, 1/500 Window M 1981
Zenit-TTL
aka Zenit-12
M, 1/500 TTL • WA M 1978
Zenit-V M, 1/500 -- M 1968
Subscribe
Notify of
guest

Copy this code

and paste it here *

0 comments
Inline Feedbacks
View all comments

Copyright © 2012-2024 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

Chromatic aberration

There are two kinds of chromatic aberration: longitudinal and lateral. Longitudinal chromatic aberration is a variation in location of the image plane with changes in wave lengths. It produces the image point surrounded by different colors which result in a blurred image in black-and-white pictures. Lateral chromatic aberration is a variation in image size or magnification with wave length. This aberration does not appear at axial image points but toward the surrounding area, proportional to the distance from the center of the image field. Stopping down the lens has only a limited effect on these aberrations.

Spherical aberration

Spherical aberration is caused because the lens is round and the film or image sensor is flat. Light entering the edge of the lens is more severely refracted than light entering the center of the lens. This results in a blurred image, and also causes flare (non-image forming internal reflections). Stopping down the lens minimizes spherical aberration and flare, but introduces diffraction.

Astigmatism

Astigmatism in a lens causes a point in the subject to be reproduced as a line in the image. The effect becomes worse towards the corner of the image. Stopping down the lens has very little effect.

Coma

Coma in a lens causes a circular shape in the subject to be reproduced as an oval shape in the image. Stopping down the lens has almost no effect.

Curvature of field

Curvature of field is the inability of a lens to produce a flat image of a flat subject. The image is formed instead on a curved surface. If the center of the image is in focus, the edges are out of focus and vice versa. Stopping down the lens has a limited effect.

Distortion

Distortion is the inability of a lens to capture lines as straight across the entire image area. Barrel distortion causes straight lines at the edges of the frame to bow toward the center of the image, producing a barrel shape. Pincushion distortion causes straight lines at the edges of the frame to curve in toward the lens axis. Distortion, whether barrel or pincushion type, is caused by differences in magnification; stopping down the lens has no effect at all.

The term "distortion" is also sometimes used instead of the term "aberration". In this case, other types of optical aberrations may also be meant, not necessarily geometric distortion.

Diffraction

Classically, light is thought of as always traveling in straight lines, but in reality, light waves tend to bend around nearby barriers, spreading out in the process. This phenomenon is known as diffraction and occurs when a light wave passes by a corner or through an opening. Diffraction plays a paramount role in limiting the resolving power of any lens.

Doublet

Doublet is a lens design comprised of two elements grouped together. Sometimes the two elements are cemented together, and other times they are separated by an air gap. Examples of this type of lens include achromatic close-up lenses.

Dynamic range

Dynamic range is the maximum range of tones, from darkest shadows to brightest highlights, that can be produced by a device or perceived in an image. Also called tonal range.

Resolving power

Resolving power is the ability of a lens, photographic emulsion or imaging sensor to distinguish fine detail. Resolving power is expressed in terms of lines per millimeter that are distinctly recorded in the final image.

Vignetting

Vignetting is the darkening of the corners of an image relative to the center of the image. There are three types of vignetting: optical, mechanical, and natural vignetting.

Optical vignetting is caused by the physical dimensions of a multi-element lens. Rear elements are shaded by elements in front of them, which reduces the effective lens opening for off-axis incident light. The result is a gradual decrease of the light intensity towards the image periphery. Optical vignetting is sensitive to the aperture and can be completely cured by stopping down the lens. Two or three stops are usually sufficient.

Mechanical vignetting occurs when light beams are partially blocked by external objects such as thick or stacked filters, secondary lenses, and improper lens hoods.

Natural vignetting (also known as natural illumination falloff) is not due to the blocking of light rays. The falloff is approximated by the "cosine fourth" law of illumination falloff. Wide-angle rangefinder designs are particularly prone to natural vignetting. Stopping down the lens cannot cure it.

Flare

Bright shapes or lack of contrast caused when light is scattered by the surface of the lens or reflected off the interior surfaces of the lens barrel. This is most often seen when the lens is pointed toward the sun or another bright light source. Flare can be minimized by using anti-reflection coatings, light baffles, or a lens hood.

Ghosting

Glowing patches of light that appear in a photograph due to lens flare.

Retrofocus design

Design with negative lens group(s) positioned in front of the diaphragm and positive lens group(s) positioned at the rear of the diaphragm. This provides a short focal length with a long back focus or lens-to-film distance, allowing for movement of the reflex mirror in SLR cameras. Sometimes called an inverted telephoto lens.

Anastigmat

A photographic lens completely corrected for the three main optical aberrations: spherical aberration, coma, and astigmatism.

By the mid-20th century, the vast majority of lenses were close to being anastigmatic, so most manufacturers stopped including this characteristic in lens names and/or descriptions and focused on advertising other features (anti-reflection coating, for example).

Rectilinear design

Design that does not introduce significant distortion, especially ultra-wide angle lenses that preserve straight lines and do not curve them (unlike a fisheye lens, for instance).

Focus shift

A change in the position of the plane of optimal focus, generally due to a change in focal length when using a zoom lens, and in some lenses, with a change in aperture.

Transmittance

The amount of light that passes through a lens without being either absorbed by the glass or being reflected by glass/air surfaces.

Modulation Transfer Function (MTF)

When optical designers attempt to compare the performance of optical systems, a commonly used measure is the modulation transfer function (MTF).

The components of MTF are:

The MTF of a lens is a measurement of its ability to transfer contrast at a particular resolution from the object to the image. In other words, MTF is a way to incorporate resolution and contrast into a single specification.

Knowing the MTF curves of each photographic lens and camera sensor within a system allows a designer to make the appropriate selection when optimizing for a particular resolution.

Veiling glare

Lens flare that causes loss of contrast over part or all of the image.

Anti-reflection coating

When light enters or exits an uncoated lens approximately 5% of the light is reflected back at each lens-air boundary due to the difference in refractive index. This reflected light causes flare and ghosting, which results in deterioration of image quality. To counter this, a vapor-deposited coating that reduces light reflection is applied to the lens surface. Early coatings consisted of a single thin film with the correct refractive index differences to cancel out reflections. Multi-layer coatings, introduced in the early 1970s, are made up of several such films.

Benefits of anti-reflection coating:

Circular fisheye

Produces a 180° angle of view in all directions (horizontal, vertical and diagonal).

The image circle of the lens is inscribed in the image frame.

Diagonal (full-frame) fisheye

Covers the entire image frame. For this reason diagonal fisheye lenses are often called full-frame fisheyes.

Extension ring

Extension rings can be used singly or in combination to vary the reproduction ratio of lenses. They are mounted between the camera body and the lens. As a rule, the effect becomes stronger the shorter the focal length of the lens in use, and the longer the focal length of the extension ring.

View camera

A large-format camera with a ground-glass viewfinder at the image plane for viewing and focusing. The photographer must stick his head under a cloth hood in order to see the image projected on the ground glass. Because of their 4x5-inch (or larger) negatives, these cameras can produce extremely high-quality results. View cameras also usually support movements.

135 cartridge-loaded film

43.27 24 36
  • Introduced: 1934
  • Frame size: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm
  • Area: 864mm2
  • Double perforated
  • 8 perforations per frame

120 roll film

71.22 44 56
  • Introduced: 1901
  • Frame size: 56 × 44mm
  • Aspect ratio: 11:14
  • Diagonal: 71.22mm
  • Area: 2464mm2
  • Unperforated

120 roll film

79.2 56 56
  • Introduced: 1901
  • Frame size: 56 × 56mm
  • Aspect ratio: 1:1
  • Diagonal: 79.2mm
  • Area: 3136mm2
  • Unperforated

120 roll film

89.64 56 70
  • Introduced: 1901
  • Frame size: 70 × 56mm
  • Aspect ratio: 5:4
  • Diagonal: 89.64mm
  • Area: 3920mm2
  • Unperforated

220 roll film

71.22 44 56
  • Introduced: 1965
  • Frame size: 56 × 44mm
  • Aspect ratio: 11:14
  • Diagonal: 71.22mm
  • Area: 2464mm2
  • Unperforated
  • Double the length of 120 roll film

220 roll film

79.2 56 56
  • Introduced: 1965
  • Frame size: 56 × 56mm
  • Aspect ratio: 1:1
  • Diagonal: 79.2mm
  • Area: 3136mm2
  • Unperforated
  • Double the length of 120 roll film

220 roll film

89.64 56 70
  • Introduced: 1965
  • Frame size: 70 × 56mm
  • Aspect ratio: 5:4
  • Diagonal: 89.64mm
  • Area: 3920mm2
  • Unperforated
  • Double the length of 120 roll film

Shutter speed ring with "F" setting

The "F" setting disengages the leaf shutter and is set when using only the focal plane shutter in the camera body.

Catch for disengaging cross-coupling

The shutter and diaphragm settings are cross-coupled so that the diaphragm opens to a corresponding degree when faster shutter speeds are selected. The cross-coupling can be disengaged at the press of a catch.

Cross-coupling button

With the cross-coupling button depressed speed/aperture combinations can be altered without changing the Exposure Value setting.

M & X sync

The shutter is fully synchronized for M- and X-settings so that you can work with flash at all shutter speeds.

In M-sync, the shutter closes the flash-firing circuit slightly before it is fully open to catch the flash at maximum intensity. The M-setting is used for Class M flash bulbs.

In X-sync, the flash takes place when the shutter is fully opened. The X-setting is used for electronic flash.

X sync

The shutter is fully synchronized for X-setting so that you can work with flash at all shutter speeds.

In X-sync, the flash takes place when the shutter is fully opened. The X-setting is used for electronic flash.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.

Format

Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),

where:

CF – crop-factor of a sensor,
FL – focal length of a lens.

Mount

A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Leica, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance (distance from the mechanical rear end surface of the lens mount to the focal plane) is also different.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.

Speed

The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. Magnification is expressed as a ratio. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Electronic manual focus override is performed in the following way: half-press the shutter button, wait until the camera has finished the autofocusing and then focus manually without releasing the shutter button using the focusing ring.

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Fixed diaphragm

The aperture setting is fixed at F/ on this lens, and cannot be adjusted.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.

Weight

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front lens element over multi-coatings.

Filters

Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.

Teleconverters

Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.

Lens caps

Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.