Asahi Pentax ES II

aka Honeywell Pentax ES II

35mm MF film SLR camera

Specification

Production details:
Announced:June 1973
System: Asahi Pentax M42 (1957)
Format:
Maximum format:35mm full frame
Film type:135 cartridge-loaded film
Mount and Flange focal distance:M42 [45.5mm]
Shutter:
Type:Focal-plane
Model:Electronically controlled
Speeds:8 - 1/1000 + B
Exposure:
Exposure metering:Through-the-lens (TTL), open-aperture
Exposure modes:Aperture-priority Auto
Manual
Physical characteristics:
Weight:879g
Dimensions:143x98x90mm

Manufacturer description #1

SECOND GENERATION: HONEYWELL PENTAX ES II

Automatic Pentax ES II retains all the features of its predecessor with added features of two automatic settings, a self-timer, a shutter release lock, an expanded ASA scale of 20-3200 and three additional long-exposure shutter speed calibrations of 2, 4 and 8 seconds visible in the viewfinder. New "square" imprinted automatic setting index programs a viewfinder curtain to close blocking light from viewfinder area, a feature useful for close-up, macro photography and extended exposures. Four 1.5-volt silver batteries are housed on the underside near the lens mount. The Pentax ES II is finished in satin black and is available with a 50mm f/1.4 SMCT lens for $649.50 or a 55mm f/1.8 SMCT lens for $599.50.

Manufacturer description #2

THE FUTURE IS NOW.

As a serious photographer, you've probably invested a lot of time and money experimenting with photographic techniques and equipment.

And, taking a cue from the pros you've talked to, you've probably already decided that someday you'll settle on one superior system and build on it.

Now may be that time.

You'll want the best camera body to build your system on. A camera that gives you precise, dependable, easy operation. A camera that gives you automation, even with bellows and extension tubes.

You'll also want superb optics, a system with precision lenses and matched optical accessories that offer you a wide range of photographic capabilities.

You'll want a system that has the service to back up your investment, where you live and wherever you travel.

The system to consider starts with the Honeywell Pentax ES II - the perfectionist's camera. This second generation of the world's first automatic electronic shutter SLR is two giant steps ahead of any other - truly the camera of the future, available now.

Picture perfect exposures. Easily, effortlessly, every time.

ES II automation controls the speed of the electronic shutter precisely, in an infinitely variable range from 8 seconds down to 1/1000 second. If 1/555 or 2-1/59th second gives the best possible exposure, that's exactly what you get.

This camera doesn't control you - you control it. You pre-set the aperture for complete depth-of-field control. You control shutter speed by changing aperture setting. If, for example, you're shooting a speeding car, opening up the lens will increase the shutter speed.

The ES II doesn't take away your creativity, it adds to it.

On the way to building the world's best-selling fine camera line, we learned that professionals and advanced amateurs are the first to adapt to features that make dependable exposures easier.

But when you're ready to start building a professional quality system, you want to be prepared for any contingency, any exposure situation. Spotlighted subjects, for example, with dark background, or strong backlights, on a subject in a dimly lit foreground.

With the ES automatic exposure override system, you can easily compensate for these difficult situations. Just set the exposure factor dial for 1/2X, 2X or 4X. This automatically changes shutter speed for correct exposure of back lit, side lit or shadowed portions of the scene. Automatic compensation that has the same effect as manually opening up or stopping down the lens aperture with old-fashioned cameras. And you can also use this exposure factor dial under more normal lighting conditions, when your creative instinct calls for a low key or high key effect.

This camera of the future has years-ahead matching lenses.

The ES II comes with your choice of 50mm f/1.4 or 55mm f/1.8 Super-Multi-Coated Takumar lens. These revolutionary lenses let up to 99.8% of light pass through each lens surface, so you get truer, more vibrant, better balanced color. Super-Multi-Coating virtually eliminates the flare and glare, the "foggy" look that can ruin good pictures (especially in difficult back lit situations, like shooting into the sun).

Dependably good exposures, perfect color. What more could you want?

True system capability. When you invest in the world's best camera body, you expect to add fine lenses. There are 23 Super-Multi-Coated Takumars, from Fish-Eye to 1000mm Telephoto in the Pentax system.

Included in the 250 matched accessories available are 47 other Super Takumars you can use with the ES II. You may already own some of them. (Think hard about this if you're tempted to buy a cheaper "EE" camera which has the automation in the lens. When you remove these lenses, you uncouple the system and defeat the automatic operation.)

More reasons to make the ES II your systems camera: Self-timer; FP and X sync; battery checker; PC terminal; hot shoe; shutter release lock. Every fine feature you'd expect to find in the camera of the future.

Manufacturer description #3

Asahi Pentax ES II is the most exciting 35 mm SLR camera on the market today. It comes equipped with a through-the-lens metering system with focal-plane electronic shutter for automatic exposure control. The fully automatic electronic shutter operates just like an electronic computer assuring you of perfect exposures everytime. The new electronic shutter lets you shoot automatically at any speed between 1/1000 and 8 seconds! If the exact shutter speed should be 1/459, 1/733 or 1/952 seconds, then that's the shutter speed that will be automatically selected. Our patented memory device and electronic shutter make it possible. There's also an exposure control dial for intentional over- or under-exposures.

The Pentax ES II is the automatic single-lens reflex camera that works automatically without special lenses. It operates automatically with virtually all Takumar lenses, as well as, bellows, extension tubes, and other close-up accessories. The reason is, unlike other cameras, the automation is incorporated into the body itself, not into the lens. Pentax ES II is equipped with a Super-Multi-Coated Takumar lens. Excusively developed by Pentax, Super-Multi-Coated Takumar lenses reduce flare and boost contrast to a degree far beyond what was previously possible in optical technology. Your pictures will have more detail and richer colors than is possible with any other system at any price.

***

TYPE: 35mm TTL-metering SLR camera with focal-plane electronic shutter for automatic exposure control.

FILM AND PICTURE SIZE: 35mm film. 24mm x 36mm.

SHUTTERS: TTL-metering electronic shutter for automatic exposure control + mechanical shutter for manual speed selection. Horizontal run focal plane shutter. Electronic shutter speeds: unlimited variation between 8 and 1/1000 sec. Mechanical shutter: 1/60 (X), 1/125, 1/250, 1/500, 1/1000 sec. Shutter button safety lock also serves for Time exposure.

SELF-TIMER: Built-in self-timer with interrupt function. Releases shutter in 5-11 sec.

VIEWFINDER: Eye-level pentaprism finder with Fresnel lens + microprism. 0.89x magnification with 50mm lens. -1.0 dioptry. Life-size magnification with 55mm lens. -1.0 dioptry. 93% viewfinder coverage. Viewfinder blinds can be closed in automatic shutter mode. Shutter speed calibration, TTL meter needle and battery check mark in the viewfinder screen.

FOCUSING: Turn the distance scale ring until the subject image in the viewfinder comes into sharp focus.

REFLEX MIRROR: Instant return type.

FILM ADVANCE: Ratchet type rapid wind lever. 10 deg. pre-advance and 160 deg. advance angle.

FILM REWIND: Rapid rewind crank. Film rewind button on base of camera body releases film from take-up spool rewind.

FILM EXPOSURE COUNTER: Automatic re-set type.

COCKED INDICATOR: A red disk appears in a small window alongside the shutter release button when the shutter is cocked, and blacks out when it is released.

LENS MOUNT: 42mm thread (Pentax-mount).

FLASH SYNCHRONIZATION: FP + X contacts for conventional flash cord connection. X contact on hot shoe for convenient flash cordless connection.

EXPOSURE METER: CdS-activated TTL meter for open-diaphragm and stop-down reading. Light measurement range: EV1-18 with ASA 100 film. ASA speed scale: 20-3200.

EXPOSURE FACTOR CONTROL DIAL: 1x for normal exposure. 2x, 4x, 1/2x for intentional over- or under-exposure.

POWER SOURCE: Four 1.5V silver oxide batteries (Eveready S76E or Mallory MS-76H).

FILM TYPE INDICATOR: black & white, color daylight, color tungsten and EMP. (empty).

From the Classic Camera magazine (February 1998)

Two years after its launch, the Asahi Pentax ES was replaced by an improved model, simply designated Asahi Pentax ES II. The new camera offered the same basic performance as the original, as well as a host of improvements. The Asahi Pentax ES II was again equipped with a self timer, actuated by a lever placed at the front. Film speed was extended to 3200 ASA and a mechanical lock was added to avoid accidental release of the shutter. An eyepiece protection blind could be set by the shutter speed selector. In the viewfinder, the shutter speed range occupied the same position, but was extended to 8s. Apart from the presence of the self timer lever at the front, the outer appearance of the ES II was unchanged. The ES II logo remained prominent at the front and the lens throat became longer in order to house four 1.5 V button batteries in its base, each in its own slot. The four cells are aligned and use the same cover. Slightly improved in performance, the Asahi Pentax ES II still offered manual speed selection from 1/60s to 1/1000s and B setting and full speed selection, from the slowest to 1/1000s in automatic exposure mode. As the ES, Asahi Pentax ES II cameras were mostly finished in black and designated by serial numbers starting from 6,600,000. Total production of the Asahi Pentax ES II was slightly more than that of the ES and a limited number of the new model was made with connections to accept a motor drive, of the same type made for the Spotmatic Motor Drive and Spotmatic F Motor Drive.

From the editor

The weight and dimensions are indicated for the camera body with the SMC Takumar 55mm F/1.8 lens mounted.

Similar cameras (120)

35mm full frame • Manual focus • Film • Singe-lens reflex • M42 mount

Model Shutter Metering Modes Year
Contax D
aka ConSol
aka HEXACON
aka Pentacon
M, 1/1000 -- M 1951
Contax E
aka Pentacon E
M, 1/1000 Window M 1956
Contax F
aka Pentacon F
M, 1/1000 -- M 1956
Contax FB
aka Pentacon FB
M, 1/1000 Window M 1956
Contax FBM
aka Pentacon FBM
M, 1/1000 Window M 1958
Contax FM
aka Pentacon FM
M, 1/1000 -- M 1958
Contax S M, 1/1000 -- M 1949
Cosina Voigtlander Bessaflex TM M, 1/2000 TTL • WA M 2003
Exa 1b
aka Exa 1c
M, 1/175 -- M 1977
Exakta Twin TL 42 M, 1/1000 TTL • WA M
Fujica AZ-1 E, 1/1000 TTL • OA AM 1977
Fujica ST601 M, 1/700 TTL • WA M 1975
Fujica ST605 M, 1/700 TTL • WA M 1976
Fujica ST605 II M, 1/700 TTL • OA M 1978
Fujica ST605N M, 1/700 TTL • WA M 1978
Fujica ST701 M, 1/1000 TTL • WA M 1970
Fujica ST705 M, 1/1500 TTL • OA M 1976
Fujica ST705W M, 1/1500 TTL • OA M 1978
Fujica ST801 M, 1/2000 TTL • OA M 1972
Fujica ST901 E, 1/1000 TTL • OA AM 1974
Mamiya DSX 1000 M, 1/1000 TTL • OA M 1974
Mamiya DSX 1000B M, 1/1000 TTL • OA M 1975
Mamiya DSX 500 M, 1/500 TTL • OA M 1974
Mamiya MSX 1000 M, 1/1000 TTL • OA M 1974
Mamiya MSX 500 M, 1/500 TTL • OA M 1974
Mamiya/Sekor 1000 DTL M, 1/1000 TTL • WA M 1968
Mamiya/Sekor 1000 TL M, 1/1000 TTL • WA M 1966
Mamiya/Sekor 2000 DTL M, 1/2000 TTL • WA M 1969
Mamiya/Sekor 500 DTL M, 1/1000 TTL • WA M 1968
Mamiya/Sekor 500 TL M, 1/500 TTL • WA M 1966
Mamiya/Sekor CP
aka Mamiya/Sekor CWP
M, 1/1000 Window M 1964
Olympus FTL M, 1/1000 TTL • OA M 1970
Pentacon super M, 1/2000 TTL • OA M 1968
Pentaflex SL M, 1/500 -- M 1967
Petri PENTA M, 1/500 -- M 1959
Praktica M, 1/500 -- M 1949
Praktica DTL 2 M, 1/1000 TTL • WA M 1978
Praktica DTL 3 M, 1/1000 TTL • WA M 1979
Praktica EE 2 E, 1/1000 TTL • OA AM 1977
Praktica EE 3 E, 1/1000 TTL • OA AM 1979
Praktica FX
aka Praktiflex FX
M, 1/500 -- M 1952
Praktica FX 2
aka Praktica FX 3
M, 1/500 -- M 1956
Praktica III M, 1/500 -- M 1955
Praktica IV (early) M, 1/500 -- M 1959
Praktica IV (late) M, 1/500 -- M 1960
Praktica IV B M, 1/500 Window M 1961
Praktica IV BM M, 1/500 Window M 1961
Praktica IV F M, 1/500 -- M 1963
Praktica IV FB M, 1/500 Window M 1963
Praktica IV M M, 1/500 -- M 1961
Praktica L
aka Praktica autoreflex S
M, 1/1000 -- M 1969
Praktica L 2 M, 1/1000 -- M 1975
Praktica LB
aka Praktica autoreflex SL
M, 1/1000 Window M 1972
Praktica LB 2 M, 1/1000 Window M 1976
Praktica LLC M, 1/1000 TTL • OA M 1969
Praktica LTL
aka Praktica autoreflex S-TL
M, 1/1000 TTL • WA M 1970
Praktica LTL 2 M, 1/1000 TTL • WA M 1975
Praktica LTL 3 M, 1/1000 TTL • WA M 1975
Praktica mat M, 1/1000 TTL • WA M 1965
Praktica MTL 3 M, 1/1000 TTL • WA M 1978
Praktica MTL 5 M, 1/1000 TTL • WA M 1983
Praktica MTL 50 M, 1/1000 TTL • WA M 1985
Praktica MTL 5B
aka Praktica MTL NOVA B
aka Praktica TL 5B
M, 1/1000 TTL • WA M 1985
Praktica nova M, 1/500 -- M 1964
Praktica nova B M, 1/500 Window M 1965
Praktica PL electronic E, 1/500 -- M 1967
Praktica PL nova I M, 1/500 -- M 1967
Praktica PL nova IB M, 1/500 Window M 1967
Praktica PLC 2 M, 1/1000 TTL • OA M 1975
Praktica PLC 3 M, 1/1000 TTL • OA M 1978
Praktica super TL M, 1/500 TTL • WA M 1968
Praktica super TL 2
aka Praktica 1000
M, 1/500 TTL • WA M 1975
Praktica super TL 3 M, 1/500 TTL • WA M 1978
Praktica super TL1000
aka Praktica MTL 3
aka Praktica MTL 5
aka Praktica NOVA II
aka Praktica PM 3
aka Praktica TL 3
M, 1/1000 TTL • WA M 1980
Praktica super TL500 M, 1/500 TTL • WA M 1981
Praktica V F M, 1/500 -- M 1964
Praktica V FB M, 1/500 Window M 1965
Praktica VLC M, 1/1000 TTL • OA M 1974
Praktica VLC 2 M, 1/1000 TTL • OA M 1976
Praktica VLC 3 M, 1/1000 TTL • OA M 1976
Ricoh Auto TLS EE M, 1/1000 TTL • OA SM 1976
Ricoh Singlex II M, 1/1000 TTL • WA M 1976
Ricoh Singlex TLS M, 1/1000 TTL • WA M 1967
Ricoh SLX 500 M, 1/500 TTL • WA M 1975
Ricoh TLS 401 M, 1/1000 TTL • WA M 1970
Sigma Mark-I M, 1/1000 TTL • WA M 1975
Voigtlander VSL1 (TM)
aka Ifbaflex M 102
M, 1/1000 TTL • OA M 1974
Yashica Electro AX E, 1/1000 TTL • WA AM 1972
Yashica FFT M, 1/1000 TTL • WA M 1973
Yashica J-3 M, 1/500 Window M 1962
Yashica J-4 M, 1/500 Window M 1965
Yashica J-5 M, 1/1000 Window M 1964
Yashica J-7 M, 1/1000 Window M 1966
Yashica J-P M, 1/500 -- M 1964
Yashica Penta J
aka Yashica Reflex 35
M, 1/500 -- M 1961
Yashica TL M, 1/500 TTL • WA M 1968
Yashica TL Electro X E, 1/1000 TTL • WA M 1968
Yashica TL Electro X ITS E, 1/1000 TTL • WA M 1970
Yashica TL-E M, 1/500 TTL • WA M 1969
Yashica TL-Electro M, 1/1000 TTL • WA M 1972
Yashica TL-Super M, 1/1000 TTL • WA M 1966
Zeiss Ikon Icarex 35 (TM) M, 1/1000 -- M 1969
Zeiss Ikon Icarex 35S (TM) M, 1/1000 TTL • OA M 1969
Zeiss Ikon SL706 M, 1/1000 TTL • OA M 1971
Zenit-10 M, 1/500 Window M 1982
Zenit-11 M, 1/500 Window M 1982
Zenit-122[V] M, 1/500 TTL • WA M 1990
Zenit-12sd
aka Zenit-12xp
M, 1/500 TTL • WA M 1983
Zenit-15M M, 1/500 TTL • WA M
Zenit-16 M, 1/1000 TTL • OA M 1975
Zenit-18 E, 1/1000 TTL • OA AM 1980
Zenit-19 E, 1/1000 TTL • WA M 1979
Zenit-312m M, 1/500 TTL • WA M 1999
Zenit-412DX M, 1/500 TTL • WA M 2000
Zenit-412LS M, 1/500 TTL • WA M 2002
Zenit-E M, 1/500 Window M 1965
Zenit-EM M, 1/500 Window M 1972
Zenit-ET M, 1/500 Window M 1981
Zenit-TTL
aka Zenit-12
M, 1/500 TTL • WA M 1978
Zenit-V M, 1/500 -- M 1968
Subscribe
Notify of
guest

Copy this code

and paste it here *

0 comments
Inline Feedbacks
View all comments

Copyright © 2012-2024 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

Chromatic aberration

There are two kinds of chromatic aberration: longitudinal and lateral. Longitudinal chromatic aberration is a variation in location of the image plane with changes in wave lengths. It produces the image point surrounded by different colors which result in a blurred image in black-and-white pictures. Lateral chromatic aberration is a variation in image size or magnification with wave length. This aberration does not appear at axial image points but toward the surrounding area, proportional to the distance from the center of the image field. Stopping down the lens has only a limited effect on these aberrations.

Spherical aberration

Spherical aberration is caused because the lens is round and the film or image sensor is flat. Light entering the edge of the lens is more severely refracted than light entering the center of the lens. This results in a blurred image, and also causes flare (non-image forming internal reflections). Stopping down the lens minimizes spherical aberration and flare, but introduces diffraction.

Astigmatism

Astigmatism in a lens causes a point in the subject to be reproduced as a line in the image. The effect becomes worse towards the corner of the image. Stopping down the lens has very little effect.

Coma

Coma in a lens causes a circular shape in the subject to be reproduced as an oval shape in the image. Stopping down the lens has almost no effect.

Curvature of field

Curvature of field is the inability of a lens to produce a flat image of a flat subject. The image is formed instead on a curved surface. If the center of the image is in focus, the edges are out of focus and vice versa. Stopping down the lens has a limited effect.

Distortion

Distortion is the inability of a lens to capture lines as straight across the entire image area. Barrel distortion causes straight lines at the edges of the frame to bow toward the center of the image, producing a barrel shape. Pincushion distortion causes straight lines at the edges of the frame to curve in toward the lens axis. Distortion, whether barrel or pincushion type, is caused by differences in magnification; stopping down the lens has no effect at all.

The term "distortion" is also sometimes used instead of the term "aberration". In this case, other types of optical aberrations may also be meant, not necessarily geometric distortion.

Diffraction

Classically, light is thought of as always traveling in straight lines, but in reality, light waves tend to bend around nearby barriers, spreading out in the process. This phenomenon is known as diffraction and occurs when a light wave passes by a corner or through an opening. Diffraction plays a paramount role in limiting the resolving power of any lens.

Doublet

Doublet is a lens design comprised of two elements grouped together. Sometimes the two elements are cemented together, and other times they are separated by an air gap. Examples of this type of lens include achromatic close-up lenses.

Dynamic range

Dynamic range is the maximum range of tones, from darkest shadows to brightest highlights, that can be produced by a device or perceived in an image. Also called tonal range.

Resolving power

Resolving power is the ability of a lens, photographic emulsion or imaging sensor to distinguish fine detail. Resolving power is expressed in terms of lines per millimeter that are distinctly recorded in the final image.

Vignetting

Vignetting is the darkening of the corners of an image relative to the center of the image. There are three types of vignetting: optical, mechanical, and natural vignetting.

Optical vignetting is caused by the physical dimensions of a multi-element lens. Rear elements are shaded by elements in front of them, which reduces the effective lens opening for off-axis incident light. The result is a gradual decrease of the light intensity towards the image periphery. Optical vignetting is sensitive to the aperture and can be completely cured by stopping down the lens. Two or three stops are usually sufficient.

Mechanical vignetting occurs when light beams are partially blocked by external objects such as thick or stacked filters, secondary lenses, and improper lens hoods.

Natural vignetting (also known as natural illumination falloff) is not due to the blocking of light rays. The falloff is approximated by the "cosine fourth" law of illumination falloff. Wide-angle rangefinder designs are particularly prone to natural vignetting. Stopping down the lens cannot cure it.

Flare

Bright shapes or lack of contrast caused when light is scattered by the surface of the lens or reflected off the interior surfaces of the lens barrel. This is most often seen when the lens is pointed toward the sun or another bright light source. Flare can be minimized by using anti-reflection coatings, light baffles, or a lens hood.

Ghosting

Glowing patches of light that appear in a photograph due to lens flare.

Retrofocus design

Design with negative lens group(s) positioned in front of the diaphragm and positive lens group(s) positioned at the rear of the diaphragm. This provides a short focal length with a long back focus or lens-to-film distance, allowing for movement of the reflex mirror in SLR cameras. Sometimes called an inverted telephoto lens.

Anastigmat

A photographic lens completely corrected for the three main optical aberrations: spherical aberration, coma, and astigmatism.

By the mid-20th century, the vast majority of lenses were close to being anastigmatic, so most manufacturers stopped including this characteristic in lens names and/or descriptions and focused on advertising other features (anti-reflection coating, for example).

Rectilinear design

Design that does not introduce significant distortion, especially ultra-wide angle lenses that preserve straight lines and do not curve them (unlike a fisheye lens, for instance).

Focus shift

A change in the position of the plane of optimal focus, generally due to a change in focal length when using a zoom lens, and in some lenses, with a change in aperture.

Transmittance

The amount of light that passes through a lens without being either absorbed by the glass or being reflected by glass/air surfaces.

Modulation Transfer Function (MTF)

When optical designers attempt to compare the performance of optical systems, a commonly used measure is the modulation transfer function (MTF).

The components of MTF are:

The MTF of a lens is a measurement of its ability to transfer contrast at a particular resolution from the object to the image. In other words, MTF is a way to incorporate resolution and contrast into a single specification.

Knowing the MTF curves of each photographic lens and camera sensor within a system allows a designer to make the appropriate selection when optimizing for a particular resolution.

Veiling glare

Lens flare that causes loss of contrast over part or all of the image.

Anti-reflection coating

When light enters or exits an uncoated lens approximately 5% of the light is reflected back at each lens-air boundary due to the difference in refractive index. This reflected light causes flare and ghosting, which results in deterioration of image quality. To counter this, a vapor-deposited coating that reduces light reflection is applied to the lens surface. Early coatings consisted of a single thin film with the correct refractive index differences to cancel out reflections. Multi-layer coatings, introduced in the early 1970s, are made up of several such films.

Benefits of anti-reflection coating:

Circular fisheye

Produces a 180° angle of view in all directions (horizontal, vertical and diagonal).

The image circle of the lens is inscribed in the image frame.

Diagonal (full-frame) fisheye

Covers the entire image frame. For this reason diagonal fisheye lenses are often called full-frame fisheyes.

Extension ring

Extension rings can be used singly or in combination to vary the reproduction ratio of lenses. They are mounted between the camera body and the lens. As a rule, the effect becomes stronger the shorter the focal length of the lens in use, and the longer the focal length of the extension ring.

View camera

A large-format camera with a ground-glass viewfinder at the image plane for viewing and focusing. The photographer must stick his head under a cloth hood in order to see the image projected on the ground glass. Because of their 4x5-inch (or larger) negatives, these cameras can produce extremely high-quality results. View cameras also usually support movements.

135 cartridge-loaded film

43.27 24 36
  • Introduced: 1934
  • Frame size: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm
  • Area: 864mm2
  • Double perforated
  • 8 perforations per frame

120 roll film

71.22 44 56
  • Introduced: 1901
  • Frame size: 56 × 44mm
  • Aspect ratio: 11:14
  • Diagonal: 71.22mm
  • Area: 2464mm2
  • Unperforated

120 roll film

79.2 56 56
  • Introduced: 1901
  • Frame size: 56 × 56mm
  • Aspect ratio: 1:1
  • Diagonal: 79.2mm
  • Area: 3136mm2
  • Unperforated

120 roll film

89.64 56 70
  • Introduced: 1901
  • Frame size: 70 × 56mm
  • Aspect ratio: 5:4
  • Diagonal: 89.64mm
  • Area: 3920mm2
  • Unperforated

220 roll film

71.22 44 56
  • Introduced: 1965
  • Frame size: 56 × 44mm
  • Aspect ratio: 11:14
  • Diagonal: 71.22mm
  • Area: 2464mm2
  • Unperforated
  • Double the length of 120 roll film

220 roll film

79.2 56 56
  • Introduced: 1965
  • Frame size: 56 × 56mm
  • Aspect ratio: 1:1
  • Diagonal: 79.2mm
  • Area: 3136mm2
  • Unperforated
  • Double the length of 120 roll film

220 roll film

89.64 56 70
  • Introduced: 1965
  • Frame size: 70 × 56mm
  • Aspect ratio: 5:4
  • Diagonal: 89.64mm
  • Area: 3920mm2
  • Unperforated
  • Double the length of 120 roll film

Shutter speed ring with "F" setting

The "F" setting disengages the leaf shutter and is set when using only the focal plane shutter in the camera body.

Catch for disengaging cross-coupling

The shutter and diaphragm settings are cross-coupled so that the diaphragm opens to a corresponding degree when faster shutter speeds are selected. The cross-coupling can be disengaged at the press of a catch.

Cross-coupling button

With the cross-coupling button depressed speed/aperture combinations can be altered without changing the Exposure Value setting.

M & X sync

The shutter is fully synchronized for M- and X-settings so that you can work with flash at all shutter speeds.

In M-sync, the shutter closes the flash-firing circuit slightly before it is fully open to catch the flash at maximum intensity. The M-setting is used for Class M flash bulbs.

In X-sync, the flash takes place when the shutter is fully opened. The X-setting is used for electronic flash.

X sync

The shutter is fully synchronized for X-setting so that you can work with flash at all shutter speeds.

In X-sync, the flash takes place when the shutter is fully opened. The X-setting is used for electronic flash.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.

Format

Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),

where:

CF – crop-factor of a sensor,
FL – focal length of a lens.

Mount

A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Leica, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance (distance from the mechanical rear end surface of the lens mount to the focal plane) is also different.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.

Speed

The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. Magnification is expressed as a ratio. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Electronic manual focus override is performed in the following way: half-press the shutter button, wait until the camera has finished the autofocusing and then focus manually without releasing the shutter button using the focusing ring.

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Fixed diaphragm

The aperture setting is fixed at F/ on this lens, and cannot be adjusted.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.

Weight

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front lens element over multi-coatings.

Filters

Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.

Teleconverters

Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.

Lens caps

Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.