Canon EOS 5D mark IV

35mm AF digital SLR camera

Specification

Production details:
Announced:August 2016
System: Canon EOS (1987)
Format:
Maximum format:35mm full frame
Imaging sensor:36 × 24mm CMOS sensor
Resolution:6720 × 4480 - 30 MP
Sensor-shift image stabilization:-
Mount and Flange focal distance:Canon EF [44mm]
Shutter:
Type:Focal-plane
Model:Electronically controlled
Speeds:30 - 1/8000 + B
Exposure:
Exposure metering:Through-the-lens (TTL), open-aperture
Exposure modes:Programmed Auto
Aperture-priority Auto
Shutter-priority Auto
Manual
Physical characteristics:
Weight:890g
Dimensions:150.7x116.4x75.9mm

Manufacturer description #1

Featuring an approximately 30.4 million effective pixel 35 mm full-frame CMOS sensor and DIGIC 6+ imaging processor, the EOS 5D Mark IV achieves a standard ISO sensitivity range of 100-32000. Additionally, equipped with a newly developed mirror vibration control system, the camera achieves a maximum continuous-shooting speed of approximately 7 frames per second (fps). What’s more, it makes possible Dual Pixel RAW (DPRAW) shooting, which affixes the dual-pixel information captured by the image sensor to RAW images that can be used by Canon’s proprietary (free-of-charge) RAW processing software, Digital Photo Professional (Ver. 4.5), to perform such minute image processing as image micro-adjustment, bokeh shift and ghosting reduction.

The Canon EOS 5D Mark IV is equipped with 61 point high-density reticular AF II, achieving an expanded longitudinal focus area compared with its predecessor, and makes possible autofocus for all AF points*1 up to an aperture of f/8 when using an extender for super-telephoto shooting. Additionally, the AF can focus with high precision even in low-light environments with a minimum illumination of EV-3 at the central AF point. What’s more, the Digital Lens Optimizer function enables the correction of image degradation caused by lens distortion and diffraction phenomena, corrections that couldn’t be performed by conventional lens optics alone, and compensates for the apparent deterioration of high resolution caused by a low-pass filter.

Also, featuring the same approximately 150,000 pixel RGB+IR metering sensor as the EOS 5DS/5DS R (released in June 2015), the Eos 5D Mark IV achieves enhanced subject detection and tracking performance.

The EOS 5D Mark IV makes possible high-definition 4K video shooting at 30p, Full HD video at 60p, and 120p HD video ideal for slow motion, and offers a time lapse function that combines still images taken at a fixed interval to create a time-lapse video. Additionally, equipped with the same 4K frame capture function featured on the flagship EOS-1D X Mark II, users can extract selected frames*2 from recorded 4K video as approximately 8.8 megapixel JPEG still images.

Manufacturer description #2

MELVILLE, N.Y., August 25, 2016 – Canon U.S.A., Inc., a leader in digital imaging solutions, is proud to announce the EOS 5D Mark IV DSLR camera, the next generation of the popular and versatile 5D series of Canon professional DSLR cameras. Building on this legendary legacy, the EOS 5D Mark IV propels the series forward with a fusion of features and enhancements targeted to please even the most discerning creative eyes. The camera’s 30.4 megapixel 35mm Full Frame Canon CMOS sensor offers stunning image quality while the DIGIC 6+ Image Processor delivers 4K 30P video and up to and seven frames per second (fps) continuous shooting. To make video shooting even easier, the camera also features Canon’s propriety Dual Pixel CMOS AF, even when shooting 4K to help ensure sharp focus and subject tracking.

In addition, Canon is also introducing two new L-series EF lenses – the Canon EF 16-35mm f/2.8L III USM Ultra-Wide Zoom Lens and EF 24-105mm f/4L IS II USM Standard Zoom Lens– offering fantastic edge-to-edge sharpness across the imaging plane, as well as improved durability and performance.

“Canon’s EOS 5D series of DSLR cameras has a history of being at the forefront of still and video innovation. And today, we add to this family of cameras the EOS 5D Mark IV– the first in our 5D series to offer 4K video and built-in Wi-Fi and NFC connectivity,” said Yuichi Ishizuka, president and COO, Canon U.S.A., Inc. “In developing this new DSLR camera, we listened to the requests of current EOS users to create for them a modern, versatile camera designed to help them create and share beautiful still and video imagery.”

“Outdoor photographers will really appreciate the new EOS 5D Mark IV, as it offers more resolution, better detail in the shadows, and improved speeds in autofocus and frame rate,” reported acclaimed nature photographer and Canon Explorer of Light George Lepp. “With the fabulous resolution of 4K video and the ability to make beautiful prints from a frame of that video as an added bonus, this camera sets a new mid-range standard for nature photography."

EOS 5D Mark IV DSLR Camera Specifications:

  • New 30.4 Megapixel full-frame CMOS sensor for versatile shooting in nearly any light, with ISO range 100–32,000; expandable up to 50–102,400.
  • 4K Motion JPEG video (DCI cinema-type 4096 x 2160) at 30p or 24p; in-camera still frame grab* of 4K 8.8-Megapixel images; multiple video options include Full HD up to 60p, and HD up to 120p.
  • Superb Dual Pixel CMOS AF for responsive and smooth AF during video or Live View shooting; LCD monitor has full touch-screen interface, including selection of AF area.
  • Excellent performance — up to 7.0 fps** continuous shooting speed with high performance DIGIC 6+ Image Processor for improved speed and excellent image quality.
  • 61 AF points with expanded vertical coverage with 41 cross-points, and AF possible at all 61 AF points with many lens + extender combinations effective at f/8.
  • 150,000-pixel RGB+IR metering sensor helps provide precise exposure metering, helps detect flickering lights and allows for enhanced scene recognition and face detection capabilities.
  • Dual Pixel RAW***, in-camera Digital Lens Optimizer during JPEG shooting and Diffraction Correction technologies.
  • Built-in Wi-Fi®1 and NFC2 connectivity provide easy sharing to compatible smart devices, select social media sites and the Canon Connect Station CS100 device.
  • Built-in GPS3 provides geotag information including auto time syncing with Universal Time Code (UTC) via satellites.

“I have owned every camera in the 5D line, so the new EOS 5D Mark IV feels like an old friend in my hands, only better” exclaimed renowned wedding photographer and Canon Explorer of Light Clay Blackmore. “It has everything a professional photographer needs to create outstanding, quality images every time. Between its ability with still images and video capture, it is the complete package and—in my opinion—the best wedding camera on the planet.”

“When working with macro beauty photography, I need fast and precise autofocus. With each breath of the subject I need to be able to check the exact placement of focus, whether on the tips of the eyelashes, the pupils or other detail of her face. The EOS 5D Mark IV gave me exactly the speed and precision required to capture the detail and stunning color that is a signature of my beauty work,” remarked celebrated fashion and beauty photographer and Canon Explorer of Light Lindsay Adler. “I’m always looking for ways to create visuals that help me stand out from the competition. Cinemagraphs, also known as ‘living images,’ allow me to combine still frames and video to create captivating images. Because of the EOS 5D Mark IV’s 4K and slow motion capabilities, I now have the ability to create high quality and visually compelling cinemagraphs without having to invest in an expensive cinema camera!”

The Next Generation of EOS 5D Cameras

In addition to the new Full Frame sensor, the new EOS 5D Mark IV includes a 61-point High-Density Reticular AF II system, similar to the one found in the flagship EOS-1D X Mark II, with all AF points selectable by the user (and up to 41 cross-type points depending on the lens in use). The AF system, improved over previous Canon 5D series models, includes expanded coverage across the frame that supports AF at maximum apertures up to f/8 with all 61 points for high-precision autofocus even when using EF super-telephoto lenses with an EF extender. Standard ISO range for the EOS 5D Mark IV is ISO 100-32,000 and is expandable to 50-102,400.

The EOS 5D Mark IV also introduces a new 150,000 pixel RGB+IR metering sensor with enhanced precision and performance compared to its predecessor, improving upon facial recognition and tracking as well as nature and sports scenes with fast-moving action. AF sensitivity in low light is EV-3 and EV-4 when in Live View mode. The EOS Scene Detection System can detect and compensate for flickering light sources that are often used in gymnasiums and swimming pools. When enabled, this anti-flicker system automatically adjusts shutter release timing to help reduce disparities in exposure and color especially during continuous burst shooting.

Following the groundbreaking video recording capabilities introduced in the EOS 5D Mark II and EOS 5D Mark III, the EOS 5D Mark IV takes the next leap forward offering DCI 4K video recording. Adding to the versatility of capturing 4K video, is Canon’s Dual Pixel CMOS AF. This proven autofocus system allows for continuous focus tracking of subjects, and can be customized by the user for optimal performance. Dual Pixel CMOS AF technology not only enhances 4K video recording, but also helps create crisp focus for 4K Frame Grab extraction of 8.8 megapixel still JPEG images, all done in camera.

Mobile Connectivity

For the first time in an EOS 5D series DSLR camera, the EOS 5D Mark IV features built-in Wi-Fi®1 and Near-Field Communication (NFC)™1 providing for the easy transfer of images and MP4 movies to compatible mobile devices, as well remote shooting when using the Canon Camera Connect App2. The EOS 5D Mark IV also includes a built-in GPS3 receiver with compass for precise geo-tagged information of latitude, longitude, and elevation. This is especially valuable to wildlife photographers and photojournalists who need to track their locations, as well as providing sports and wedding photographers the ability to sync a multiple-camera setup with extreme accuracy and precision. The camera’s built-in GPS can also be used to sync the camera’s time to the atomic clock, an invaluable feature when multiple photographers are covering the same event.

Similar cameras (1)

35mm full frame • Auto focus • Digital • Singe-lens reflex • Canon EF mount

Model Shutter Metering Modes Year
Kodak DCS Pro SLR/c E, 1/6000 TTL • OA PASM 2004
Subscribe
Notify of
guest

Copy this code

and paste it here *

0 comments
Inline Feedbacks
View all comments

Copyright © 2012-2024 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

Chromatic aberration

There are two kinds of chromatic aberration: longitudinal and lateral. Longitudinal chromatic aberration is a variation in location of the image plane with changes in wave lengths. It produces the image point surrounded by different colors which result in a blurred image in black-and-white pictures. Lateral chromatic aberration is a variation in image size or magnification with wave length. This aberration does not appear at axial image points but toward the surrounding area, proportional to the distance from the center of the image field. Stopping down the lens has only a limited effect on these aberrations.

Spherical aberration

Spherical aberration is caused because the lens is round and the film or image sensor is flat. Light entering the edge of the lens is more severely refracted than light entering the center of the lens. This results in a blurred image, and also causes flare (non-image forming internal reflections). Stopping down the lens minimizes spherical aberration and flare, but introduces diffraction.

Astigmatism

Astigmatism in a lens causes a point in the subject to be reproduced as a line in the image. The effect becomes worse towards the corner of the image. Stopping down the lens has very little effect.

Coma

Coma in a lens causes a circular shape in the subject to be reproduced as an oval shape in the image. Stopping down the lens has almost no effect.

Curvature of field

Curvature of field is the inability of a lens to produce a flat image of a flat subject. The image is formed instead on a curved surface. If the center of the image is in focus, the edges are out of focus and vice versa. Stopping down the lens has a limited effect.

Distortion

Distortion is the inability of a lens to capture lines as straight across the entire image area. Barrel distortion causes straight lines at the edges of the frame to bow toward the center of the image, producing a barrel shape. Pincushion distortion causes straight lines at the edges of the frame to curve in toward the lens axis. Distortion, whether barrel or pincushion type, is caused by differences in magnification; stopping down the lens has no effect at all.

The term "distortion" is also sometimes used instead of the term "aberration". In this case, other types of optical aberrations may also be meant, not necessarily geometric distortion.

Diffraction

Classically, light is thought of as always traveling in straight lines, but in reality, light waves tend to bend around nearby barriers, spreading out in the process. This phenomenon is known as diffraction and occurs when a light wave passes by a corner or through an opening. Diffraction plays a paramount role in limiting the resolving power of any lens.

Doublet

Doublet is a lens design comprised of two elements grouped together. Sometimes the two elements are cemented together, and other times they are separated by an air gap. Examples of this type of lens include achromatic close-up lenses.

Dynamic range

Dynamic range is the maximum range of tones, from darkest shadows to brightest highlights, that can be produced by a device or perceived in an image. Also called tonal range.

Resolving power

Resolving power is the ability of a lens, photographic emulsion or imaging sensor to distinguish fine detail. Resolving power is expressed in terms of lines per millimeter that are distinctly recorded in the final image.

Vignetting

Vignetting is the darkening of the corners of an image relative to the center of the image. There are three types of vignetting: optical, mechanical, and natural vignetting.

Optical vignetting is caused by the physical dimensions of a multi-element lens. Rear elements are shaded by elements in front of them, which reduces the effective lens opening for off-axis incident light. The result is a gradual decrease of the light intensity towards the image periphery. Optical vignetting is sensitive to the aperture and can be completely cured by stopping down the lens. Two or three stops are usually sufficient.

Mechanical vignetting occurs when light beams are partially blocked by external objects such as thick or stacked filters, secondary lenses, and improper lens hoods.

Natural vignetting (also known as natural illumination falloff) is not due to the blocking of light rays. The falloff is approximated by the "cosine fourth" law of illumination falloff. Wide-angle rangefinder designs are particularly prone to natural vignetting. Stopping down the lens cannot cure it.

Flare

Bright shapes or lack of contrast caused when light is scattered by the surface of the lens or reflected off the interior surfaces of the lens barrel. This is most often seen when the lens is pointed toward the sun or another bright light source. Flare can be minimized by using anti-reflection coatings, light baffles, or a lens hood.

Ghosting

Glowing patches of light that appear in a photograph due to lens flare.

Retrofocus design

Design with negative lens group(s) positioned in front of the diaphragm and positive lens group(s) positioned at the rear of the diaphragm. This provides a short focal length with a long back focus or lens-to-film distance, allowing for movement of the reflex mirror in SLR cameras. Sometimes called an inverted telephoto lens.

Anastigmat

A photographic lens completely corrected for the three main optical aberrations: spherical aberration, coma, and astigmatism.

By the mid-20th century, the vast majority of lenses were close to being anastigmatic, so most manufacturers stopped including this characteristic in lens names and/or descriptions and focused on advertising other features (anti-reflection coating, for example).

Rectilinear design

Design that does not introduce significant distortion, especially ultra-wide angle lenses that preserve straight lines and do not curve them (unlike a fisheye lens, for instance).

Focus shift

A change in the position of the plane of optimal focus, generally due to a change in focal length when using a zoom lens, and in some lenses, with a change in aperture.

Transmittance

The amount of light that passes through a lens without being either absorbed by the glass or being reflected by glass/air surfaces.

Modulation Transfer Function (MTF)

When optical designers attempt to compare the performance of optical systems, a commonly used measure is the modulation transfer function (MTF).

The components of MTF are:

The MTF of a lens is a measurement of its ability to transfer contrast at a particular resolution from the object to the image. In other words, MTF is a way to incorporate resolution and contrast into a single specification.

Knowing the MTF curves of each photographic lens and camera sensor within a system allows a designer to make the appropriate selection when optimizing for a particular resolution.

Veiling glare

Lens flare that causes loss of contrast over part or all of the image.

Anti-reflection coating

When light enters or exits an uncoated lens approximately 5% of the light is reflected back at each lens-air boundary due to the difference in refractive index. This reflected light causes flare and ghosting, which results in deterioration of image quality. To counter this, a vapor-deposited coating that reduces light reflection is applied to the lens surface. Early coatings consisted of a single thin film with the correct refractive index differences to cancel out reflections. Multi-layer coatings, introduced in the early 1970s, are made up of several such films.

Benefits of anti-reflection coating:

Circular fisheye

Produces a 180° angle of view in all directions (horizontal, vertical and diagonal).

The image circle of the lens is inscribed in the image frame.

Diagonal (full-frame) fisheye

Covers the entire image frame. For this reason diagonal fisheye lenses are often called full-frame fisheyes.

Extension ring

Extension rings can be used singly or in combination to vary the reproduction ratio of lenses. They are mounted between the camera body and the lens. As a rule, the effect becomes stronger the shorter the focal length of the lens in use, and the longer the focal length of the extension ring.

View camera

A large-format camera with a ground-glass viewfinder at the image plane for viewing and focusing. The photographer must stick his head under a cloth hood in order to see the image projected on the ground glass. Because of their 4x5-inch (or larger) negatives, these cameras can produce extremely high-quality results. View cameras also usually support movements.

135 cartridge-loaded film

43.27 24 36
  • Introduced: 1934
  • Frame size: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm
  • Area: 864mm2
  • Double perforated
  • 8 perforations per frame

120 roll film

71.22 44 56
  • Introduced: 1901
  • Frame size: 56 × 44mm
  • Aspect ratio: 11:14
  • Diagonal: 71.22mm
  • Area: 2464mm2
  • Unperforated

120 roll film

79.2 56 56
  • Introduced: 1901
  • Frame size: 56 × 56mm
  • Aspect ratio: 1:1
  • Diagonal: 79.2mm
  • Area: 3136mm2
  • Unperforated

120 roll film

89.64 56 70
  • Introduced: 1901
  • Frame size: 70 × 56mm
  • Aspect ratio: 5:4
  • Diagonal: 89.64mm
  • Area: 3920mm2
  • Unperforated

220 roll film

71.22 44 56
  • Introduced: 1965
  • Frame size: 56 × 44mm
  • Aspect ratio: 11:14
  • Diagonal: 71.22mm
  • Area: 2464mm2
  • Unperforated
  • Double the length of 120 roll film

220 roll film

79.2 56 56
  • Introduced: 1965
  • Frame size: 56 × 56mm
  • Aspect ratio: 1:1
  • Diagonal: 79.2mm
  • Area: 3136mm2
  • Unperforated
  • Double the length of 120 roll film

220 roll film

89.64 56 70
  • Introduced: 1965
  • Frame size: 70 × 56mm
  • Aspect ratio: 5:4
  • Diagonal: 89.64mm
  • Area: 3920mm2
  • Unperforated
  • Double the length of 120 roll film

Shutter speed ring with "F" setting

The "F" setting disengages the leaf shutter and is set when using only the focal plane shutter in the camera body.

Catch for disengaging cross-coupling

The shutter and diaphragm settings are cross-coupled so that the diaphragm opens to a corresponding degree when faster shutter speeds are selected. The cross-coupling can be disengaged at the press of a catch.

Cross-coupling button

With the cross-coupling button depressed speed/aperture combinations can be altered without changing the Exposure Value setting.

M & X sync

The shutter is fully synchronized for M- and X-settings so that you can work with flash at all shutter speeds.

In M-sync, the shutter closes the flash-firing circuit slightly before it is fully open to catch the flash at maximum intensity. The M-setting is used for Class M flash bulbs.

In X-sync, the flash takes place when the shutter is fully opened. The X-setting is used for electronic flash.

X sync

The shutter is fully synchronized for X-setting so that you can work with flash at all shutter speeds.

In X-sync, the flash takes place when the shutter is fully opened. The X-setting is used for electronic flash.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.

Format

Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),

where:

CF – crop-factor of a sensor,
FL – focal length of a lens.

Mount

A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Leica, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance (distance from the mechanical rear end surface of the lens mount to the focal plane) is also different.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.

Speed

The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. Magnification is expressed as a ratio. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Electronic manual focus override is performed in the following way: half-press the shutter button, wait until the camera has finished the autofocusing and then focus manually without releasing the shutter button using the focusing ring.

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Fixed diaphragm

The aperture setting is fixed at F/ on this lens, and cannot be adjusted.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.

Weight

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front lens element over multi-coatings.

Filters

Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.

Teleconverters

Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.

Lens caps

Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.