Nikon Fisheye-NIKKOR 8mm F/8

Fisheye lens • Pro • Film era • Discontinued

Abbreviations

FISHEYE An ultra-wide angle lens with strong uncorrected barrel distortion and extreme 180-degree angle of view.

Production details

Announced:July 1962
Production type:Mass production
Production status: Discontinued
Original name:Nippon Kogaku Fish-eye-NIKKOR 1:8 f=8mm
System:Nikon F (1959)

Features highlight

Extreme AoV
Non-retrofocus
Fixed focus
Manual
MF
Compact
Built-in filters

Specification

Optical design
Focal length:8mm
Speed:F/8
Maximum format:35mm full frame
Mount and Flange focal distance:Nikon F [46.5mm]
Lens construction:9 elements - 5 groups
Non-retrofocus
Fixed focus
Diaphragm mechanism
Diaphragm type:Manual
Aperture control:Aperture ring
Number of blades:6 (six)
Focusing
Closest focusing distance:<No data>
Maximum magnification ratio:<No data>
Manual focus control:None
Physical characteristics
Weight:300g
Maximum diameter x Length:⌀82×42.3mm
Weather sealing:-
Fluorine coating:-
Accessories
Filters:Removable front filters are not accepted
Built-in O57, Y48, Y51, L1A, XO, R60 (part of the lens optical system)
Lens hood:Not available
Teleconverters:<No data>

*) Sources of data: Manufacturer's technical data ● Nikon for flexibility & versatility booklet ● Nikon cameras, Nikkor lenses, Nikon accessories booklet ● The Nikon system of photography booklet (September 1965).

**) Some basic information is missing in the specification as it was not provided by the manufacturer.

Compatibility

  • This non-AI lens was designed for Nikon F, F2, Nikkormat FS, FT, FT2, FTN, EL, ELW 35mm film SLR cameras.
  • Non-AI lenses cannot be used on Nikon digital SLR cameras (except for the Df) or late (AI) film SLR cameras. However, non-AI lenses can be fitted to Nikon FM, FE, EL2, F3, F4 and Nikkormat FT3 cameras which used the AI metering system but allowed the metering coupling lever to be disengaged. The F5 could have this mechanism fitted as an optional extra. Non-AI lenses can be also fitted to the Nikon F2A and F2AS cameras because the AI mechanism was fitted to the removable metering prism.
  • The lens was designed for use with 35mm film SLR cameras with the mirror locked in the up position.

Manufacturer description #1

The only super-wideangle lens for a 35 mm camera covering a 180 deg. picture angle- horizontally and vertically. A round image, 24 mm in diameter is reproduced on the negative. Manual diaphragm with click-stops to f 22. Fixed focus because of extremely deep depth of field. Has six built-in filters on an internally rotating turret: orange, medium yellow, dark yellow, skylight, yellowish green and red. Non-meter coupling. Supplied with an aiming finder to be fitted in the accessory shoe. Leather case also available. Fits Nikon F with mirror locked up. Photomic F finder must be removed for attachment of Fisheye.

Manufacturer description #2

Supplied with front and rear caps, and a centering finder. Fits Nikon F (with mirror locked up).

The only super-wide angle lens for a 35mm camera covering 180° picture angle horizontally and vertically. Features 9-elements. Manual diaphragm. Click-stops to f22. Has six built-in filters on internally rotating turret: Orange, Medium Yellow, Deep Yellow, UV Haze, Green, Red.

Manufacturer description #3

This lens covers a 180° picture angle horizontally and vertically. A circular image field, 24 mm in diameter, is obtained. This lens is ideal for such scientific requirements as measuring the zenith or azimuth angle of astronomical bodies or for showing the distribution of clouds in meteorology. In addition, the Fish-eye lens can also be used to obtain distorted pictures with unusual graphic impact, especially in advertising photography.

The front element has an exceptionally large 69mm diameter. A manually set diaphragm operated by a lever has click-stops to f/22. No focusing is required because of its extreme depth of field: from infinity to 20" (50 cm) even at full opening. There are six built-in filters on a rotating turret: orange (O57), medium yellow (Y48), dark yellow (Y51), skylight (L1A), yellowish green (XO) and red (R60).

The lens is used with the mirror in the camera locked up. This lens requires the use of a matching Fish-eye Finder with the field of 160° which fits onto the camera accessory shoe. Because of its large 82 mm barrel diameter, the lens cannot be attached to the camera without first removing Photomic series finder.

From the editor

The Fisheye-Nikkor 8mm f8 was the world's first 35mm fisheye lens to go into full production. It projects an image 24mm in diameter. Its principle drawback is that fact that it is not a retro-focus design. The rear element protrudes so far into the mirror box that there is less than one cm clearance between it and the shutter. The mirror must be locked in the up position before mounting the lens and viewing is done through the DF-1 supplementary viewfinder that attaches to the accessory shoe. It has a rotating filter turret that introduces six different filters in to the light path. If you add the less than convincing optical performance of this lens to the handling difficulties it ceases to be a pratical tool and is really only of interest to collectors.

Typical application

fisheye lens

A fisheye lens is a type of ultra-wide angle lenses with extreme 180 degree angle of view. Unlike conventional wide-angle lenses, fisheyes are not corrected for distortion - strong barrel distortion is a characteristic of all lenses of such class.

Fisheye lenses are normally used for specialized purposes and unusual special effects in advertising, commercial, scientific, surveillance, meteorologic and astronomic photography, but also popular for shooting extremely wide landscapes, interiors, action sports and even funny close-up portraits.

There are two types of fisheye lenses:

  • a circular fisheye produces a 180 degree angle of view in all directions (horizontal, vertical and diagonal) and the image circle of the lens is inscribed in the image frame;
  • a diagonal fisheye produces a 180 degree diagonal angle of view and covers the entire image frame. For this reason diagonal fisheyes are often called full frame fisheye lenses.

Professional model (Top class)

  • Specialized tool

Genres or subjects of photography (2):

Scientific photography • Industrial photography

Adaptation to digital SLR cameras:

Canon EOS SLRsSigma SD SLRsSony SLRs/SLTsPentax SLRsMore information

Not adaptable

In order to adapt the lens, the flange focal distance (FFD) of the lens mount must be equal to or greater than the FFD of the camera mount. This lens has the Nikon F mount with a FFD of 46.5mm. This is even shorter than the FFD of Canon EOS digital SLR cameras, which have the shortest FFD of 44mm of any modern digital SLR cameras. Therefore, this lens cannot be adapted to any digital SLR camera.

Recommended slowest shutter speed when shooting static subjects handheld:

1/8th of a second

Alternatives in the Nikon F system

///// Sorted by focal length and speed, in ascending order /////

Subscribe
Notify of
guest

Copy this code

and paste it here *

0 comments
Inline Feedbacks
View all comments
Share
Clickable
Table of contents
Clickable
Pros and cons
Nikon non-AI Nikkor series lenses (106)
Clickable

Nikon non-AI Nikkor series lenses

Offer optical performance similar to AI Nikkors but do not incorporate the automatic maximum-aperture indexing (AI) and Aperture Direct Reading (ADR) features. They are used with stopdown exposure measurement on Nikon cameras. However, most Auto-Nikkors equipped with meter-coupling shoe can be converted to AI operation and full-aperture metering.

Diaphragms - automatic, preset, or manual - of non-AI and AI lens types function in an identical manner with all Nikon-system cameras.

The A-type

The very first lenses for the Nikon F and the Nikkormat FT/FTN belong to the A-type and can be distinguished by the fact that no screw heads are visible on the lens bayonet ring, and the distance scale was only marked in meters. Later A-type lenses have screw heads protruding through the lens bayonet and a distance scale in both meters and feet. All A-type lenses have a chrome finished filter ring and the designation was engraved with the name "Nikkor", the maximum aperture, and the focal length. Early A-types have the focal length shown in centimeters, whilst on later lenses it is given in millimeters. Lenses having "Auto" are equipped with automatic diaphragms which are coupled directly to the shutter release and mirror action mechanisms.

Several of these lenses were modified by the addition of multi-coating to their glass elements to become C-types.

The code letter after the "Nikkor" engraving is indicative of the number of elements in each lens. The letters are from Latin or Greek: U for 1 element (Uns),B for 2 elements (Bini), T for 3 elements (Tres), Q for 4 elements (Quatuor), P for 5 elements (Pente), H for 6 elements (Hex), S for 7 elements (Septem), O for 8 elements (Octo), N for 9 elements (Novem), D for 10 elements (Decem).

Thus, the Nikkor-P Auto 105mm lens is constructed with five lens elements, and the Nikkor-UD Auto consists of eleven elements.

The C-type

The C-type Nikkors resemble the A-versions, but some or all of their glass elements are multi-coated. Slight cosmetic changes also differentiate the C-type lenses, which have a black finish to their filter ring with the additional "C" after the code letter for the number of elements. The C-types were introduced from 1967 and remained in production into the early 1970s.

The K-type

Most K-type lenses were fitted with a rubber covered focusing ring, which makes them instantly recognizable from their predecessors. Their depth-of-field rings were usually finished in black, but otherwise their internal construction was the same as the C-types. During 1977, after a relatively short time in production, the K-types were replaced by the AI Nikkors.

Copyright © 2012-2022 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

35mm full frame

43.27 24 36
  • Dimensions: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm
  • Area: 864mm2

MF

Sorry, no additional information is available.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.

Format

Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),

where:

CF – crop-factor of a sensor,
FL – focal length of a lens.

Mount

A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance can also be different.

The flange focal distance (FFD) is the distance from the mechanical rear end surface of the lens mount to the focal plane.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.

Speed

The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Non-retrofocus lens

The lens was designed for use with 35mm film SLR cameras with the mirror locked in the up position. The lens extended into the SLR's mirror box when mounted. Mirror lock-up must be activated prior to mounting the lens; otherwise its rearmost element would be in the way as the mirror flipped up and down during exposure. A separate optical viewfinder had to be mounted on the accessory shoe to confirm angle of view, because when the mirror is in the up and locked position, the subject is no longer visible through the viewfinder.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Fixed focus

There is no helicoid in this lens and everything is in focus from the closest focusing distance to infinity.

Internal focusing (IF)

Conventional lenses employ an all-group shifting system, in which all lens elements shift during focusing. The IF system, however, shifts only part of the optics during focusing. The advantages of the IF system are:

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Fixed diaphragm

The aperture setting is fixed at F/8 on this lens, and cannot be adjusted.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.

Weight

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.

Filters

Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.

Teleconverters

Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.

Lens caps

Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.