35mm MF film SLR camera • Discontinued


35mm full frame
Film type:
135 cartridge-loaded film
Exakta [44.7mm]
1/25 - 1/150 + B, T
Exposure metering:
Exposure modes:
Physical characteristics:

Manufacturer description #1

From the EXAKTA Magazine (Vol. 2, No. 2, 1953):

Like many other photographers, Exakta owners have often expressed a wish for a second camera, a Sunday camera that can be put in a pocket or purse, that can be given to a wife or friend as a gift. The 35-mm. Exa was designed to meet this need. The Exa is a streamlined version of the Exakta, stripped down to essentials for fine photography. It is small, measuring 5" long, 3 1/2" high and 2 1/2" deep. It has a focal plane shutter, coupled film advance and shutter cocking and built-in synchronization for regular and electronic flash. A triggerlike lever, a revolutionary design, permits exposure setting by means of a push or pull of a finger. The Exa lens and viewfinder mounts are identical with those of the Exakta, which means that you can use your present equipment with the Exa.

Manufacturer description #2

The famous Exa is now automatic. It comes equipped with the 50-mm., f/2.8 fully automatic Isco Westanar and Penta Prism, eye-level viewfinder; a sensational combination for any camera fan seeking simplicity of operation and perfection of results. The 35-mm. Exa was designed to meet the need for a second camera, a Sunday camera that can be put into a pocket or purse, a gift camera. It is a streamlined version of the Exakta, stripped down to the essentials for fine photography. It is small, measuring 5" long, 3 1/2" high and 2 1/2" deep. Its shutter is most accurate; it has coupled film advance and shutter cocking, and built-in synchronization for both regular and electronic flash. A trigger-like lever of revolutionary design permits exposure setting by means of a push or pull of a finger. The Exa lens and viewfinder mounts are identical to those of the Exakta; which means you can use most of your Exakta equipment with the Exa.

Manufacturer description #3

The Automatic Exa is one of the world's most prized cameras. It gives you the advantages of 35-mm. automatic single reflex photography. A streamlined version of the Exakta, the Exa is a marvel of 35-mm. precision miniature engineering which has become one of the most sought-after additions to the working shelf of the most critical camera fan. Measuring only 5" x 3 1/2" x 2", the Exa is small, and can be put into your pocket. The Exa is so designed that most Exakta equipment is interchangeable with its own. Every Exakta owner will find the Exa to be a welcome fulfillment of his wish for a second camera for himself, or as a gift for his family or favorite friend.

With its single reflex design, the Exa provides you with a preview of the exact, true picture that your film will record as seen in the viewfinder. As thousands upon thousands have discovered, the Exa is one of the mightiest little giants in all photodom.

Manufacturer description #4

EXA - Simple in use, sure in results - anyone can take professional quality shots with wonderful ease!

Just follow these 3 steps

1. COMPOSE YOUR PICTURE IN THE REFLEX VIEWFINDER. One lens is used both for viewing and picture taking. You see the true picture you wil get on the film - no matter how close or far you are from the subject.

2. TURN THE FOCUSING RING FOR SHARPNESS, SET THE DIAPHRAGM RING FOR THE CORRECT AMOUNT OF LIGHT. The Exa lets you make the picture the way you want - because you see all the details before you shoot.

3. PRESS THE SHUTTER RELEASE TO TAKE THE PICTURE. Once you take the picture, double exposure is impossible. The film is automatically moved to the next frame when you wind the shutter again.

The single lens reflex design of the Exa is the key ot better 35mm photography. You see a preview of your snapshot that helps remove most common errors. You don't have to guess at correct composition for different distances. You don't cut of important parts of your subject. And you don't get unsharp negatives that lose their detail with enlargement. The Exa makes perfect 35mm photography an exceptionally simple procedure.

Just aim and shoot - the smooth performance of the Exa produces flawless black-and-white prints, brilliant natural color transparencies: The Exa fits easily into pocket or purse. And it is ready for action in a moment. Truly, the Exa is a handsome, precise miniature that you should be proud to own.


Automatic Single lens reflex photography with Exa is yours whenever you want to enter this advanced field of your hobby. This is the Exa lens with fuly automatic diaphragm. You focus and compose your pictures with the widest aperture. Whenever you press the shutter release knob, the diaphragm resets itself automatically to the stop selected for the exposure. The most wonderful feature ever invented for a miniature camera.


You can have eye-level viewfinding through the Pentaprism finder, which is interchangeable with the regular reflex finder on all Exas in a matter of seconds. The Pentaprism renders an upright laterally correct image in life-size and is an immense help to quick and easy viewfinding.


for Exa can be added, with extra cost, to the Pentaprism by simply switching focusing glasses. Rangefinding is rendered by the two halves of the circle, which fall in line when the image is in proper focus.

Manufacturer description #5

The Exa I is the greatest value in single lens reflex cameras today! A streamlined version of the Exakta, the 35mm Exa provides you with a preview of the complete picture your film will record, just as you see it in the viewfinder! The Exa lens mount is the same as the Exakta lens mount, therefore many Telephoto and Wide Angle lenses are quickly interchangeable from Exa to Exakta. Measuring only 5" x 3 1/2" x 2", the Exa is small, and can be put into your pocket. Every Exakta owner will find the Exa to be a welcome fulfillment of his wish for a second camera for himself, or as a gift for his family or favorite friend. The Exa I gives you such outstanding features as flash synchronization for flashbulbs and strobe, interchangeable viewfinders (Penta Prism and Rangefinder), automatic film transport and shutter cocking, body interchangeable lenses, critical magnifier, and more.

From the Modern Photography magazine (September 1951)

The Exa is a new 35mm, single-lens reflex camera now being introduced in the United States by Ihagee Camera Works, Germany, which also makes the Exakta Cameras.

Similar in basic design to the Kine Exakta, the Exa is simpler and less expensive. It has an f/2.9 Meritar 50mm lens, shutter speeds from 1/25 to 1/150, and built-in flash synchronization. Also featured is an interchangeable eye-level viewfinder which can take the place of the waist-level viewfinder which comes with the camera. Nearly all camera accessories of the Exakta fit the Exa.

From the Exakta magazine (Vol. 1, No. 4, 1951)

When celebrity gives birth to progeny everyone sets up a hullabaloo. With pardonable pride, we'd like to do a little cheering about the Exa, newest member of the lhagee line and the Exakta's little sister.

The Exa, now being introduced throughout the United States, is a major achievement in camera design. A simplified version of the Exakta, the Exa also is a 35-mm. single-lens reflex and combines great performance with streamlined operation, two of many features designed to interest photographers who like to take good snapshots but are disinterested in the technical aspects of photography.

As an Exakta owner, you know that you have the finest, most versatile miniature camera made. Your camera is specifically engineered to meet almost any possible photographic requirement. This very fact means that it possesses mechanisms about which a certain amount of knowleage is necessary for excellent results.

Not all photographers, however, want a camera as versatile and highly refined as the Exakta. The average photographer, the one in the snapshot class - and he forms a group tremendous in number - has often expressed the desire for a camera with many of the unique features of the Exakta but with the simplicity of a box camera.

It is for such a photographer that the Exa has been designed. It's the camera for the beginner and for the advanced amateur, who want to take pictures of children, pets, friends, flowers, hobbies or vacation scenes without worrying about technique. It's the camera for a woman to carry in her purse, for a man to slip into his pocket for a Sunday of picture taking.

The Exa is not the camera for the professional, semi-professional or serious amateur who demands a great deal of his equipment (except as a second camera). Such an individual requires the Exakta.

The new baby, on which Ihagee spent years of research and experiments, is everything the snapshot photographer has asked for, wrapped up into one handsome, inexpensive package. Physically, it is smaller than its big sister, measuring 5 inches long, 3 1/2 inches high and 2 1/2 inches deep.

It has an all-metal body, handsomely finished in corrugated black and chrome. Among the Exa's other features are a focal plane shutter, coupled shutter cocking and film transport, and internal synchronization for regular and electronic flash, usually on only most expensive equipment.

Interchangeable, universal viewfinding, an exclusive Ihagee feature, has been incorporated in the Exa so focusing can be done on the ground glass at any level. Lenses also can be interchanged, but to a more limited degree than on the Exakta. The Exa will take lenses ranging in focal length and aperture from 50 mm. f2.9 to 105 mm. f 4.5.

Five basic exposure speed settings - 1/150, 1/100, 1/50, 1/25 and bulb - adequate for the needs of the average photographer, are possible by means of a revolutionary new exposure setting lever. A trigger-like lever permits instant exposure speed setting by means of the index finger.

Notify of
Inline Feedbacks
View all comments

Copyright © 2012-2024 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

Chromatic aberration

There are two kinds of chromatic aberration: longitudinal and lateral. Longitudinal chromatic aberration is a variation in location of the image plane with changes in wave lengths. It produces the image point surrounded by different colors which result in a blurred image in black-and-white pictures. Lateral chromatic aberration is a variation in image size or magnification with wave length. This aberration does not appear at axial image points but toward the surrounding area, proportional to the distance from the center of the image field. Stopping down the lens has only a limited effect on these aberrations.

Spherical aberration

Spherical aberration is caused because the lens is round and the film or image sensor is flat. Light entering the edge of the lens is more severely refracted than light entering the center of the lens. This results in a blurred image, and also causes flare (non-image forming internal reflections). Stopping down the lens minimizes spherical aberration and flare, but introduces diffraction.


Astigmatism in a lens causes a point in the subject to be reproduced as a line in the image. The effect becomes worse towards the corner of the image. Stopping down the lens has very little effect.


Coma in a lens causes a circular shape in the subject to be reproduced as an oval shape in the image. Stopping down the lens has almost no effect.

Curvature of field

Curvature of field is the inability of a lens to produce a flat image of a flat subject. The image is formed instead on a curved surface. If the center of the image is in focus, the edges are out of focus and vice versa. Stopping down the lens has a limited effect.


Distortion is the inability of a lens to capture lines as straight across the entire image area. Barrel distortion causes straight lines at the edges of the frame to bow toward the center of the image, producing a barrel shape. Pincushion distortion causes straight lines at the edges of the frame to curve in toward the lens axis. Distortion, whether barrel or pincushion type, is caused by differences in magnification; stopping down the lens has no effect at all.

The term "distortion" is also sometimes used instead of the term "aberration". In this case, other types of optical aberrations may also be meant, not necessarily geometric distortion.


Classically, light is thought of as always traveling in straight lines, but in reality, light waves tend to bend around nearby barriers, spreading out in the process. This phenomenon is known as diffraction and occurs when a light wave passes by a corner or through an opening. Diffraction plays a paramount role in limiting the resolving power of any lens.


Doublet is a lens design comprised of two elements grouped together. Sometimes the two elements are cemented together, and other times they are separated by an air gap. Examples of this type of lens include achromatic close-up lenses.

Dynamic range

Dynamic range is the maximum range of tones, from darkest shadows to brightest highlights, that can be produced by a device or perceived in an image. Also called tonal range.

Resolving power

Resolving power is the ability of a lens, photographic emulsion or imaging sensor to distinguish fine detail. Resolving power is expressed in terms of lines per millimeter that are distinctly recorded in the final image.


Vignetting is the darkening of the corners of an image relative to the center of the image. There are three types of vignetting: optical, mechanical, and natural vignetting.

Optical vignetting is caused by the physical dimensions of a multi-element lens. Rear elements are shaded by elements in front of them, which reduces the effective lens opening for off-axis incident light. The result is a gradual decrease of the light intensity towards the image periphery. Optical vignetting is sensitive to the aperture and can be completely cured by stopping down the lens. Two or three stops are usually sufficient.

Mechanical vignetting occurs when light beams are partially blocked by external objects such as thick or stacked filters, secondary lenses, and improper lens hoods.

Natural vignetting (also known as natural illumination falloff) is not due to the blocking of light rays. The falloff is approximated by the "cosine fourth" law of illumination falloff. Wide-angle rangefinder designs are particularly prone to natural vignetting. Stopping down the lens cannot cure it.


Bright shapes or lack of contrast caused when light is scattered by the surface of the lens or reflected off the interior surfaces of the lens barrel. This is most often seen when the lens is pointed toward the sun or another bright light source. Flare can be minimized by using anti-reflection coatings, light baffles, or a lens hood.


Glowing patches of light that appear in a photograph due to lens flare.

Retrofocus design

Design with negative lens group(s) positioned in front of the diaphragm and positive lens group(s) positioned at the rear of the diaphragm. This provides a short focal length with a long back focus or lens-to-film distance, allowing for movement of the reflex mirror in SLR cameras. Sometimes called an inverted telephoto lens.


A photographic lens completely corrected for the three main optical aberrations: spherical aberration, coma, and astigmatism.

By the mid-20th century, the vast majority of lenses were close to being anastigmatic, so most manufacturers stopped including this characteristic in lens names and/or descriptions and focused on advertising other features (anti-reflection coating, for example).

Rectilinear design

Design that does not introduce significant distortion, especially ultra-wide angle lenses that preserve straight lines and do not curve them (unlike a fisheye lens, for instance).

Focus shift

A change in the position of the plane of optimal focus, generally due to a change in focal length when using a zoom lens, and in some lenses, with a change in aperture.


The amount of light that passes through a lens without being either absorbed by the glass or being reflected by glass/air surfaces.

Modulation Transfer Function (MTF)

When optical designers attempt to compare the performance of optical systems, a commonly used measure is the modulation transfer function (MTF).

The components of MTF are:

The MTF of a lens is a measurement of its ability to transfer contrast at a particular resolution from the object to the image. In other words, MTF is a way to incorporate resolution and contrast into a single specification.

Knowing the MTF curves of each photographic lens and camera sensor within a system allows a designer to make the appropriate selection when optimizing for a particular resolution.

Veiling glare

Lens flare that causes loss of contrast over part or all of the image.

Anti-reflection coating

When light enters or exits an uncoated lens approximately 5% of the light is reflected back at each lens-air boundary due to the difference in refractive index. This reflected light causes flare and ghosting, which results in deterioration of image quality. To counter this, a vapor-deposited coating that reduces light reflection is applied to the lens surface. Early coatings consisted of a single thin film with the correct refractive index differences to cancel out reflections. Multi-layer coatings, introduced in the early 1970s, are made up of several such films.

Benefits of anti-reflection coating:

Circular fisheye

Produces a 180° angle of view in all directions (horizontal, vertical and diagonal).

The image circle of the lens is inscribed in the image frame.

Diagonal (full-frame) fisheye

Covers the entire image frame. For this reason diagonal fisheye lenses are often called full-frame fisheyes.

Extension ring

Extension rings can be used singly or in combination to vary the reproduction ratio of lenses. They are mounted between the camera body and the lens. As a rule, the effect becomes stronger the shorter the focal length of the lens in use, and the longer the focal length of the extension ring.

View camera

A large-format camera with a ground-glass viewfinder at the image plane for viewing and focusing. The photographer must stick his head under a cloth hood in order to see the image projected on the ground glass. Because of their 4x5-inch (or larger) negatives, these cameras can produce extremely high-quality results. View cameras also usually support movements.

135 cartridge-loaded film

43.27 24 36
  • Introduced: 1934
  • Frame size: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm
  • Area: 864mm2
  • Double perforated
  • 8 perforations per frame

120 roll film

71.22 44 56
  • Introduced: 1901
  • Frame size: 56 × 44mm
  • Aspect ratio: 11:14
  • Diagonal: 71.22mm
  • Area: 2464mm2
  • Unperforated

120 roll film

79.2 56 56
  • Introduced: 1901
  • Frame size: 56 × 56mm
  • Aspect ratio: 1:1
  • Diagonal: 79.2mm
  • Area: 3136mm2
  • Unperforated

120 roll film

89.64 56 70
  • Introduced: 1901
  • Frame size: 70 × 56mm
  • Aspect ratio: 5:4
  • Diagonal: 89.64mm
  • Area: 3920mm2
  • Unperforated

220 roll film

71.22 44 56
  • Introduced: 1965
  • Frame size: 56 × 44mm
  • Aspect ratio: 11:14
  • Diagonal: 71.22mm
  • Area: 2464mm2
  • Unperforated
  • Double the length of 120 roll film

220 roll film

79.2 56 56
  • Introduced: 1965
  • Frame size: 56 × 56mm
  • Aspect ratio: 1:1
  • Diagonal: 79.2mm
  • Area: 3136mm2
  • Unperforated
  • Double the length of 120 roll film

220 roll film

89.64 56 70
  • Introduced: 1965
  • Frame size: 70 × 56mm
  • Aspect ratio: 5:4
  • Diagonal: 89.64mm
  • Area: 3920mm2
  • Unperforated
  • Double the length of 120 roll film

Shutter speed ring with "F" setting

The "F" setting disengages the leaf shutter and is set when using only the focal plane shutter in the camera body.

Catch for disengaging cross-coupling

The shutter and diaphragm settings are cross-coupled so that the diaphragm opens to a corresponding degree when faster shutter speeds are selected. The cross-coupling can be disengaged at the press of a catch.

Cross-coupling button

With the cross-coupling button depressed speed/aperture combinations can be altered without changing the Exposure Value setting.

M & X sync

The shutter is fully synchronized for M- and X-settings so that you can work with flash at all shutter speeds.

In M-sync, the shutter closes the flash-firing circuit slightly before it is fully open to catch the flash at maximum intensity. The M-setting is used for Class M flash bulbs.

In X-sync, the flash takes place when the shutter is fully opened. The X-setting is used for electronic flash.

X sync

The shutter is fully synchronized for X-setting so that you can work with flash at all shutter speeds.

In X-sync, the flash takes place when the shutter is fully opened. The X-setting is used for electronic flash.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.


Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),


CF – crop-factor of a sensor,
FL – focal length of a lens.


A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Leica, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance (distance from the mechanical rear end surface of the lens mount to the focal plane) is also different.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.


The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. Magnification is expressed as a ratio. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Electronic manual focus override is performed in the following way: half-press the shutter button, wait until the camera has finished the autofocusing and then focus manually without releasing the shutter button using the focusing ring.

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Fixed diaphragm

The aperture setting is fixed at F/ on this lens, and cannot be adjusted.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.


Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front lens element over multi-coatings.


Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.


Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.

Lens caps

Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.