Nikon AI-S Micro-NIKKOR 55mm F/2.8

Macro lens • Film era


Sample photos



AI-S A manual focus lens with automatic maximum aperture indexing and automatic aperture control.
MICRO Macro lens. Designed specially for shooting close-ups of small subjects but can be also used in other genres of photography, not necessarily requiring focusing at close distances. Learn more

Model history (6)

Nikon AI Micro-NIKKOR 55mm F/2.81:2A6 - 50.25m⌀52 1979 
Nikon AI-S Micro-NIKKOR 55mm F/2.81:2A6 - 50.25m⌀52 1980 
Nikon AF Micro-NIKKOR 55mm F/2.81:1A6 - 50.223m⌀62 1986 
Nikon AF Micro-NIKKOR 60mm F/2.81:1A8 - 70.22m⌀62 1989 
Nikon AF Micro-NIKKOR 60mm F/2.8D1:1A8 - 70.219m⌀62 1993 
Nikon AF-S Micro-NIKKOR 60mm F/2.8G ED1:1A12 - 90.185m⌀62 2008 

Features highlight

Macro 1:2


Production details
Production status: In production
Original name:Nikon Micro-NIKKOR 55mm 1:2.8
System:Nikon F (1959)
Optical design
Focal length:55mm
Maximum format:35mm full frame
Mount and Flange focal distance:Nikon F [46.5mm]
Diagonal angle of view:42.9°
Lens construction:6 elements in 5 groups
Close Range Correction (CRC)
Diaphragm mechanism
Diaphragm type:Automatic
Aperture control:Aperture ring (Manual settings + Auto Exposure setting)
Number of blades:7 (seven)
On Nikon D APS-C [1.53x] cameras
35mm equivalent focal length:84.2mm (in terms of field of view)
35mm equivalent speed:F/4.3 (in terms of depth of field)
Diagonal angle of view:28.8°
Closest focusing distance:0.25m
Maximum magnification:1:2 at the closest focusing distance
Focusing modes:Manual focus only
Manual focus control:Focusing ring
Physical characteristics
Maximum diameter x Length:⌀63.5×62mm
Weather sealing:-
Fluorine coating:-
Filters:Screw-type 52mm
Lens hood:HN-3 - Screw-type round
Teleconverters:Nikon Teleconverter TC-14 → 77mm F/3.9
Nikon Teleconverter TC-14A → 77mm F/3.9
Nikon Teleconverter TC-200 → 110mm F/5.6
Nikon Teleconverter TC-201 → 110mm F/5.6
Sources of data
1. Manufacturer's technical data.
2. Nikkor lenses booklet (1984).
3. Nikon dealer notebook pages.
4. Nikon dealer catalogue.


  • This AI-S lens was designed for Nikon FA, FG, N2000, N6000 AI-S cameras and Nikon F3, EL2, EM, FE, FE2, FE10, FG-20, FM, FM2, FM10, FM3A, Nikkormat FT3 AI cameras. The automatic aperture control will only be available on AI-S cameras.
  • AI and AI-S lenses are backward compatible with Nikon F, F2, Nikkormat FS, FT, FT2, FTN, EL, ELW cameras.
  • On Nikon digital SLR cameras, the automatic exposure metering with AI and AI-S lenses will not be available on D40, D40X, D60, D70, D70s, D80, D3000-D3500, D5000-D5600 series.

Manufacturer description #1

An updated version of Nikon’s renown close-focusing lens, the Micro-Nikkor 55mm f/2.8 features a larger maximum aperture. Thus, the image in the viewfinder is brighter and it’s easier to focus when the light gets dim or extension rings or a bellows unit are attached. It has a modified Gauss-type optical design of six elements in five groups and incorporates a floating element system in the rear lens group for improved performance. In fact, this lens produces excellent image quality at high magnification rations as well as normal shooting distances, because definition and distortion-correction remain virtually unchaged over the entire focusing range. Nikon’s multilayer coating on air-to-glass surfaces also provides significant gain in image contrast and minimum flare at wide apertures. With a built-in dual-helical system, the Micro-Nikkor 55mm f/2.8 focuses continuously from infinity down to a reproduction ratio of 1:2 with the lens focusing ring. And by attaching the optional PK-13 Ring or TC-201 Teleconverter, it goes from 1/2 reproduction ratio down to 1:1 (lifesize). The lens offers “automatic maximum aperture indexing” (AI) with suitably equipped cameras via the meter coupling ridge provided (except the CPU type cameras without meter coupling levers such as the F80-series/N80-series,F60/N60,F50/N50). The ridge and the auto diaphragm function together permit full aperture exposure measurement; the lens is also fitted with a meter coupling shoe to permit the same operation with Nikon cameras which lack the AI facility. An “aperture-direct-readout” scale is engraved on the lens to allow direct reading of the aperture aetting in suitably equipped camera finders.

Manufacturer description #2

The 55mm Micro-Nikkor lens feature wide, well-ribbed rubberized focusing rings with excellent dampening properties. It is capable for both closeups as well as normal perspective photos at infinity focus. It has a minimum focus of 10.8" and offers 1:2 life-size reproduction ratio (1:1 with optional PK-13 Extension Tube). Accepts 52mm filters; HN-3 lens hood

From the editor

Mechanical construction is excellent, and of course optical performance on this specialized macro lens is fantastic. It is slightly larger and heavier (290g) than Nikon's ordinary normal prime lenses, but still quite light and compact. Manual focus feel is exceedingly smooth and buttery. The lens focuses down to 25 cm. It focuses to a ratio of 1:2 in standard form, and 1:1 life size with the optional PK-13 extension tube. Although the lens could be used in a non-macro way as an everyday standard lens, the relatively small maximum aperture and, more importantly, extremely long and accurate focus throw, would not be practical for general use.

Typical application


Fast full-frame macro lens

Genres or subjects of photography (8):

Macrophotography • Product photography • Landscapes • Cityscapes • Buildings • Interiors • Portraits • Travel photography

Adaptation to digital SLR cameras:

Canon EOS SLRsSigma SD SLRsSony SLRs/SLTsPentax SLRsMore information

Not adaptable

In order to adapt the lens, the flange focal distance (FFD) of the lens mount must be equal to or greater than the FFD of the camera mount. This lens has the Nikon F mount with a FFD of 46.5mm. This is even shorter than the FFD of Canon EOS digital SLR cameras, which have the shortest FFD of 44mm of any modern digital SLR cameras. Therefore, this lens cannot be adapted to any digital SLR camera.

Recommended slowest shutter speed when shooting static subjects handheld:

1/60th of a second

Alternatives in the Nikon F system

Sorted by focal length and speed, in ascending order

Lenses with similar focal length

Sorted by manufacturer name

Notify of

Copy this code

and paste it here *

Inline Feedbacks
View all comments
Table of contents
Pros and cons
Instruction manual
Nikon AI-S Nikkor series lenses (73)

Nikon AI-S Nikkor series lenses

The AI-S line was created by Nikon in 1982 when the aperture mechanism of AI lenses was enhanced to feature automatic aperture control. This feature was to be used with cameras such as the FA, FG and F301 and allowed Program or Shutter Priority (FA only) modes to be incorporated into these cameras when used with AI-S lens. The AI-S mechanisms allows the aperture increments of an AI-S lens to be controlled more precisely by the camera than with an AI lens.

The orange-colored minimum aperture value marking, and a milled semi-circular notch in the bayonet ring distinguish AI-S lenses. The notch is designed to inform Nikon cameras that employ a mechanical automatic aperture control for different exposure modes, that lens with a linear aperture mechanism is attached.

Copyright © 2012-2023 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

35mm full frame

43.27 24 36
  • Dimensions: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm
  • Area: 864mm2


Sorry, no additional information is available.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.


Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),


CF – crop-factor of a sensor,
FL – focal length of a lens.


A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance can also be different.

The flange focal distance (FFD) is the distance from the mechanical rear end surface of the lens mount to the focal plane.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.


The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Floating element system

Provides correction of aberrations and ensures constantly high image quality at the entire range of focusing distances from infinity down to the closest focusing distance. It is particularly effective for the correction of field curvature that tends to occur with large-aperture, wide-angle lenses when shooting at close ranges.

The basic mechanism of the floating element system is also incorporated into the internal and rear focusing methods.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Fixed diaphragm

The aperture setting is fixed at F/2.8 on this lens, and cannot be adjusted.

Automatic aperture control

For Programmed Auto or Shutter-priority Auto shooting, lock the lens aperture at its minimum value.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.


Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.


Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.


Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.

Lens caps

Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.