Nikon AI Micro-NIKKOR 105mm F/4

Macro lens • Film era • Discontinued

SHARE TWIT EMAIL

Abbreviations

AI A manual focus lens with automatic maximum aperture indexing, which is a mechanical system for coupling the lens to the camera's exposure system.
MICRO Macro lens. Designed specially for shooting close-ups of small subjects but can be also used in other genres of photography, not necessarily requiring focusing at close distances. Learn more

Model history (3)

Nikon Micro-NIKKOR 105mm F/41:2A5 - 30.47m⌀52 1975 
Nikon AI Micro-NIKKOR 105mm F/41:2A5 - 30.47m⌀52 1977 
Nikon AI-S Micro-NIKKOR 105mm F/41:2A5 - 30.47m⌀52 1981 

Features highlight

MF
Macro 1:2
Auto
⌀52
filters
Built-in hood

Specification

Production details
Announced:1977
Production status: Discontinued
Original name:Nikon Micro-NIKKOR 105mm 1:4
System:Nikon F (1959)
Optical design
Focal length:105mm
Speed:F/4
Maximum format:35mm full frame
Mount and Flange focal distance:Nikon F [46.5mm]
Diagonal angle of view:23.3°
Lens construction:5 elements in 3 groups
Diaphragm mechanism
Diaphragm type:Automatic
Aperture control:Aperture ring (Manual settings only)
Number of blades:7 (seven)
On Nikon D APS-C [1.53x] cameras
35mm equivalent focal length:160.7mm (in terms of field of view)
35mm equivalent speed:F/6.1 (in terms of depth of field)
Diagonal angle of view:15.3°
Focusing
Closest focusing distance:0.47m
Maximum magnification:1:2 at the closest focusing distance
Focusing modes:Manual focus only
Manual focus control:Focusing ring
Physical characteristics
Weight:500g
Maximum diameter x Length:⌀74.5×96mm
Weather sealing:-
Fluorine coating:-
Accessories
Filters:Screw-type 52mm
Lens hood:Built-in telescopic round
Teleconverters:Not compatible
Sources of data
1. Manufacturer's technical data.
2. Nikon Sales Manual (July 1977).
3. Nikkor lenses sales manual (January 1979).
4. Nikon Sales Manual (June 1978).

Compatibility

  • This AI lens was designed for Nikon F3, EL2, EM, FE, FE2, FE10, FG-20, FM, FM2, FM10, FM3A, Nikkormat FT3 AI cameras and Nikon FA, FG, N2000, N6000 AI-S cameras.
  • AI and AI-S lenses are backward compatible with Nikon F, F2, Nikkormat FS, FT, FT2, FTN, EL, ELW cameras.
  • On Nikon digital SLR cameras, the automatic exposure metering with AI and AI-S lenses will not be available on D40, D40X, D60, D70, D70s, D80, D3000-D3500, D5000-D5600 series.

Manufacturer description #1

55mm f/3.5 and 105mm f/4 Micro-Nikkors are two remarkable lenses which offer both ultra-close focusing capability and surpassing image quality at all subject distances from Macro range to infinity! So versatile they are widely employed as 'universal' lenses, both Micro-Nikkors incorporate an extended focusing mount offering continuous operation from infinity to a reproduction ratio of 1:2, here, the entire frame can be filled with a subject measuring just 48 x 72mm (1.9 x 2.8"). By adding the optional automatic extension rings PK-13 (for 55mm lens) or PN-11 (for 105mm), the lenses allow continuous focusing from 1:2 to 1:1 (life size). Dual reproduction ratio scales on each lens permit fast operation at predetermined ratios with or without the extension tube. Each Micro-Nikkor offers a minimum aperture of f/32 to permit maximum depth-of-field - a particular advantage in close-up photographs.

Because of its outstanding optical quality and focal length, the 55mm f/3.5 Micro-Nikkor is ideal for critical copying of flat subjects such as documents, color transparencies, stamps, coins, etc., or for close-ups of insects, flowers and other small subjects. It is also frequently used as a normal lens for candid, landscape and other general purposes. This lens does not usually require a lens hood as the optics are deeply recessed and effectively protected from stray light.

Equaling the image quality of the 55mm f/3.5, the 105mm f/4 Micro-Nikkor features a longer focal length for a much greater working distance and better illumination of elusive subjects (i.e., insects, birds and animals) while maintaining a natural perspective. As a medium telephoto lens, it is also ideal for portrature, sports or general creative photography.

Manufacturer description #2

The Micro-Nikkor 105mm f/4 is a special telephoto lens designed for close-up photography at high reproduction ratios. It features the same optical construction as the much-acclaimed Bellows-Nikkor 105mm f/4, but with a special focusing helicoid that enables operation from infinity to a reproduction ratio of 1:2 (half life-size) without the need for any adapters. The lens offers "automatic maximum aperture indexing" (Al) with suitably equipped cameras, via the meter coupling ridge provided. The ridge and the auto diaphragm function together to permit full aperture exposure measurement; the lens is also fitted with a meter coupling shoe to permit the same operation with Nikon cameras which lack the Al facility. In terms of optical performance, the Micro-Nikkor's excellent flatness of field is a stand-out feature, enabling virtually distortion-free images at all reproduction ratios. The application of Nikon Integrated Coating (NIC) further enhances performance by increasing image contrast, while reducing flare and ghost, for outstanding color reproduction.

When the Micro-Nikkor 105mm is used with the special Auto Extension Ring PN-11 or PN-1, focusing is further extended from 1:2 to 1:1 for full life-size reproduction.

Manufacturer description #3

Sales Points:

  • Ideal for portraits as well as close-ups.
  • 105mm focal length provides extra free-working distance for shooting elusive close-up subjects and/or ones requiring supplementary illumination.
  • Focuses continuously from infinity to one-half life-size; with the PN-11 Extension Ring, from one half to full life-size.
  • Exceptional sharpness and flatness of field.
  • Automatic diaphragm and full aperture metering.
  • Two reproduction ratio scales engraved on the lens barrel for convenient reference.
  • Minimum aperture of f/32 for additional depth of field.
  • Takes standard 52mm filters.

From the editor

A modified version with the AI mount and a locking screw to secure the focus ring (see the non-AI version for information about the issue with the focusing ring).

Typical application

Class:

Slow full-frame macro lens • Professional model

Professional model

  • Combination of focal length and closest focusing distance meets professional demands

Genres or subjects of photography (3):

Macrophotography • Product photography • Travel photography

Adaptation to digital SLR cameras:

Canon EOS SLRsSigma SD SLRsSony SLRs/SLTsPentax SLRsMore information

Not adaptable

In order to adapt the lens, the flange focal distance (FFD) of the lens mount must be equal to or greater than the FFD of the camera mount. This lens has the Nikon F mount with a FFD of 46.5mm. This is even shorter than the FFD of Canon EOS digital SLR cameras, which have the shortest FFD of 44mm of any modern digital SLR cameras. Therefore, this lens cannot be adapted to any digital SLR camera.

Recommended slowest shutter speed when shooting static subjects handheld:

1/125th of a second

Alternatives in the Nikon F system

Sorted by focal length and speed, in ascending order

Lenses with similar focal length

Sorted by manufacturer name

Subscribe
Notify of
guest

Copy this code

and paste it here *

0 comments
Inline Feedbacks
View all comments
Table of contents
Clickable
Pros and cons
Instruction manual
Clickable
Nikon AI Nikkor series lenses (58)
Clickable

Nikon AI Nikkor series lenses

The AI line was created by Nikon in 1977. It was a new system for coupling the lens to the camera's exposure system. A cam on the lens' aperture ring, known as the Meter Coupling Ridge, indicates the maximum as well as the preset aperture directly to the camera. AI Nikkors provide automatic maximum-aperture indexing (AI) and full-aperture metering, their secondary aperture scale also provides Aperture Direct Reading (ADR). Each AI-Nikkor also incorporates a meter-coupling shoe providing full-aperture metering with all pre-AI Nikon/Nikkormat meter systems.

Diaphragms - automatic, preset, or manual - of non-AI and AI lens types function in an identical manner with all Nikon-system cameras.

The mechanics of the AI lenses were improved. In earlier lenses the double helix that moves the optical system away from the film plane when focusing at close range distances causes the focusing ring to move forwards as well. To improve handling the two helixes in the AI lenses have different thread pitches. So, whilst the optical system is moved forward, the focusing ring is only displaced by a fraction of a millimeter. The depth-of-field scale is now located on the chrome ring between the focusing and aperture rings.

For a while Nikon offered a service to convert earlier pre-AI lenses to the new AI-system standard.

Copyright © 2012-2023 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

35mm full frame

43.27 24 36
  • Dimensions: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm
  • Area: 864mm2

MF

Sorry, no additional information is available.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.

Format

Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),

where:

CF – crop-factor of a sensor,
FL – focal length of a lens.

Mount

A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance can also be different.

The flange focal distance (FFD) is the distance from the mechanical rear end surface of the lens mount to the focal plane.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.

Speed

The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Fixed diaphragm

The aperture setting is fixed at F/4 on this lens, and cannot be adjusted.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.

Weight

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.

Filters

Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.

Teleconverters

Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.

Lens caps

Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.