Irix 21mm F/1.4

Ultra-wide angle prime lens • Digital era

Features highlight

Extreme AoV
Ultra fast
2
ASPH
4
ED
4
HR
IF
MF
Auto
11 blades
DP/WR

Specification

Production details
Announced:March 2022
Production status: In production
Original name:21 irix f/1.4
System:-
Optical design
Focal length:21mm
Speed:F/1.4
Maximum format:35mm full frame
Mount and Flange focal distance:Canon EF [44mm]
Nikon F [46.5mm]
Pentax K [45.5mm]
Diagonal angle of view:91.7°
Lens construction:15 elements in 11 groups
2 ASPH, 4 ED, 4 HR
Internal focusing (IF)
On Canon EOS APS-C [1.59x] cameras
35mm equivalent focal length:33.4mm (in terms of field of view)
35mm equivalent speed:F/2.2 (in terms of depth of field)
Diagonal angle of view:65.9°
On Nikon D APS-C [1.53x] cameras
35mm equivalent focal length:32.1mm (in terms of field of view)
35mm equivalent speed:F/2.1 (in terms of depth of field)
Diagonal angle of view:67.9°
On Pentax K APS-C [1.53x] cameras
35mm equivalent focal length:32.1mm (in terms of field of view)
35mm equivalent speed:F/2.1 (in terms of depth of field)
Diagonal angle of view:67.9°
Focusing
Closest focusing distance:0.3m
Maximum magnification:<No data>
Focusing modes:Manual focus only
Manual focus control:Focusing ring
Diaphragm mechanism
Diaphragm type:Automatic
Aperture control:<No data>
Number of blades:11 (eleven)
Physical characteristics
Weight:830g (Canon EF)
816g (Nikon F)
Maximum diameter x Length:⌀95×101mm (Canon EF)
⌀95×99mm (Nikon F)
Weather sealing:Dust-proof and water-resistant barrel
Fluorine coating:-
Accessories
Filters:Removable front filters are not accepted
Lens hood:Bayonet-type petal-shaped
Teleconverters:Not available
Source of data
Manufacturer's technical data.

Manufacturer description

Irix 21mm f/1.4 is another series of photographic lenses originating from the Cine line, so designed for a much more professional and demanding users from the cinema market. Both the photographic and film versions of this lens have exactly the same optical structure. The main differences concern the outer casing and the available mounts.

The optical construction of the Irix 21mm f / 1.4 lens is based on 4 ultra-low dispersion glass elements, 4 high reflectance and 2 aspherical elements. There are a total of 15 elements in 11 optical blocks. The lens is designed to work with the latest generation, full-frame 35mm sensors, i.e. with high resolution. A lot of emphasis was placed on limiting the distortion to the necessary minimum, it does not exceed 2%, so in practice it’s imperceptible. This allows you to successfully use this lens for all kinds of architectural photos. On the other hand, the combination of a very large relative aperture – f/1.4 with a well-controlled coma makes it an ideal tool for astrophotography. It’s also worth emphasizing the use of a new, 11-blade design of the aperture with rounded edges, which ensures a pleasant and very artistic bokeh of the background. It works in the range from f/1.4 to f/16.

Irix optics are appreciated by professionals who want to be able to work regardless of weather conditions. That is why, for our most demanding customers, the lens is equipped with special seals that prevent the ingress of moisture and dirt into its interior. A special bayonet mount gasket also protects the mirror chamber of the camera. A dedicated lens hood primarily reduces unwanted light reflections, but also acts as a protection for the front lens. When the lens is not in use, it can be safely stored in a dedicated hard case.

The lens housing is a continuation of the Dragonfly manufacturing standard known from the earlier Irix models. Its most important aspects are:

  • Reinforced internal structure based on metal elements
  • Scratch-resistant lens finish
  • Anti-skid focusing ring with a special finish
  • Engraved markings filled with UV-reactive paint

The Irix 21mm f/1.4 lens has electronic controls that allow you to control the aperture directly from the camera, making the popular semi-automatic (PASM) modes and EXIF data recording available. This facilitates and speeds up the work, also by allowing the use of correction profiles in the post-production process.

The use of electronics in the lens also allows the lens to be equipped with a focus confirmation system – the camera will inform you about the correct focus (in the form of an icon in the viewfinder or a sound) every time you set the focus correctly.

Focus Ring – The unique focus ring with a characteristic thickening has become a kind of hallmark of Irix 150mm, 45mm or 30mm lenses. Our users appreciate the convenience of this solution. The new Irix 21mm also features the same type of focus ring. The ring itself is a combination of a properly selected texture with good quality rubber material. Thanks to this solution, you gain reliable and precise focusing. A specially designed embossing allows you to feel the position of the ring. Those solutions make working with manual focus much easier than you might expect.

„Focus Lock” – is another hallmark of Irix optics. This function allows the movement of the focus ring to be locked in the desired position. It is especially useful when we want to keep a specific distance to the photographed object (zone-focusing) or we want to keep perfect sharpness at infinity in landscape or astrophotography.

Irix 21mm f/1.4 – main features:

  • Fast aperture f/1.4
  • Ultra wide-angle focal length with a 89.7 ° field of view
  • Unrivaled optical quality
  • Distortion below 2%
  • Internal focusing
  • Sealed design
  • Aperture control via camera
  • In camera focus confirmation
  • Compatible with PASM semi-automatic modes
  • Full EXIF data
  • “Focus Lock” function
  • 140-degree rotation angle of the focus ring
  • Reinforced internal structure

From the editor

The manufacturer description mentiones that "4 high reflectance" elements are part of the optical construction. The word "reflectance" is, of course, a typo - "refractive" should be used.

Notes

  • The manufacturer of this lens does not provide adequate quality control. If you do decide to purchase this lens, do not order it online, but choose the best copy available in the store. In any case, there may also be problems with the build quality, and warranty repairs can take months.

Typical application

Class:

Ultra-fast full-frame ultra-wide angle prime lens • Professional model

Professional model

  • Combination of focal length and speed meets professional demands
  • Dust-proof and water-resistant barrel

Genres or subjects of photography (4):

Landscapes • Cityscapes • Buildings • Interiors

Recommended slowest shutter speed when shooting static subjects handheld:

1/25th of a second

Lenses with similar focal length

Sorted by manufacturer name

Subscribe
Notify of
guest

Copy this code

and paste it here *

0 comments
Inline Feedbacks
View all comments

Copyright © 2012-2023 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

35mm full frame

43.27 24 36
  • Dimensions: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm
  • Area: 864mm2

MF

Sorry, no additional information is available.

MF

Sorry, no additional information is available.

MF

Sorry, no additional information is available.

Aspherical elements

Aspherical elements (ASPH, XA, XGM) are used in wide-angle lenses for correction of distortion and in large-aperture lenses for correction of spherical aberration, astigmatism and coma, thus ensuring excellent sharpness and contrast even at fully open aperture. The effect of the aspherical element is determined by its position within the optical formula: the more the aspherical element moves away from the aperture stop, the more it influences distortion; close to the aperture stop it can be particularly used to correct spherical aberration. Aspherical element can substitute one or several regular spherical elements to achieve similar or better optical results, which allows to develop more compact and lightweight lenses.

Use of aspherical elements has its downsides: it leads to non-uniform rendering of out-of-focus highlights. This effect usually appears as "onion-like" texture of concentric rings or "wooly-like" texture and is caused by very slight defects in the surface of aspherical element. It is difficult to predict such effect, but usually it occurs when the highlights are small enough and far enough out of focus.

Low dispersion elements

Low dispersion elements (ED, LD, SD, UD etc) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. This type of glass exhibits low refractive index, low dispersion, and exceptional partial dispersion characteristics compared to standard optical glass. Two lenses made of low dispersion glass offer almost the same performance as one fluorite lens.

Low dispersion elements

Low dispersion elements (ED, LD, SD, UD etc) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. This type of glass exhibits low refractive index, low dispersion, and exceptional partial dispersion characteristics compared to standard optical glass. Two lenses made of low dispersion glass offer almost the same performance as one fluorite lens.

Canon's Super UD, Nikon's Super ED, Pentax' Super ED, Sigma's FLD ("F" Low Dispersion), Sony' Super ED and Tamron's XLD glasses are the highest level low dispersion glasses available with extremely high light transmission. These optical glasses have a performance equal to fluorite glass.

High-refraction low-dispersion elements

High-refraction low-dispersion elements (HLD) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

High Index, High Dispersion elements

High Index, High Dispersion elements (HID) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

Anomalous partial dispersion elements

Anomalous partial dispersion elements (AD) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

Fluorite elements

Synthetic fluorite elements (FL) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. Compared with optical glass, fluorite lenses have a considerably lower refraction index, low dispersion and extraordinary partial dispersion, and high transmission of infrared and ultraviolet light. They are also significantly lighter than optical glass.

According to Nikon, fluorite easily cracks and is sensitive to temperature changes that can adversely affect focusing by altering the lens' refractive index. To avoid this, Canon, as the manufacturer most widely using fluorite in its telephoto lenses, never uses fluorite in the front and rear lens elements, and the white coating is applied to the lens barrels to reflect light and prevent the lens from overheating.

Short-wavelength refractive elements

High and specialized-dispersion elements (SR) refract light with wavelengths shorter than that of blue to achieve highly precise chromatic aberration compensation. This technology also results in smaller and lighter lenses.

Blue Spectrum Refractive Optics

Organic Blue Spectrum Refractive Optics material (BR Optics) placed between convex and concave elements made from conventional optical glass provides more efficient correction of longitudinal chromatic aberrations in comparison with conventional technology.

Diffraction elements

Diffraction elements (DO, PF) cancel chromatic aberrations at various wavelengths. This technology results in smaller and lighter lenses in comparison with traditional designs with no compromise in image quality.

High refractive index elements

High refractive index elements (HR, HRI, XR etc) minimize field curvature and spherical aberration. High refractive index element can substitute one or several regular elements to achieve similar or better optical results, which allows to develop more compact and lightweight lenses.

Apodization element

Apodization element (APD) is in fact a radial gradient filter. It practically does not change the characteristics of light beam passing through its central part but absorbs the light at the periphery. It sort of softens the edges of the aperture making the transition from foreground to background zone very smooth and results in very attractive, natural looking and silky smooth bokeh.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.

Format

Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),

where:

CF – crop-factor of a sensor,
FL – focal length of a lens.

Mount

A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance can also be different.

The flange focal distance (FFD) is the distance from the mechanical rear end surface of the lens mount to the focal plane.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.

Speed

The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Fixed focus

There is no helicoid in this lens and everything is in focus from the closest focusing distance to infinity.

Internal focusing (IF)

Conventional lenses employ an all-group shifting system, in which all lens elements shift during focusing. The IF system, however, shifts only part of the optics during focusing. The advantages of the IF system are:

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Fixed diaphragm

The aperture setting is fixed at F/1.4 on this lens, and cannot be adjusted.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.

Weight

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.

Filters

Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.

Teleconverters

Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.

Lens caps

Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.