Sony a1

35mm AF digital mirrorless camera

Specification

Production details:
Announced:January 2021
System: Sony E (2013)
Format:
Maximum format:35mm full frame
Imaging sensor:35.9 × 24mm CMOS sensor
Resolution:8640 × 5760 - 50 MP
Sensor-shift image stabilization:Yes
Mount and Flange focal distance:Sony E [18mm]
Shutter:
Type:Focal-plane
Model:Electronically controlled
Speeds:30 - 1/32000 + B
Exposure:
Exposure metering:Through-the-lens (TTL), open-aperture
Exposure modes:Programmed Auto
Aperture-priority Auto
Shutter-priority Auto
Manual
Physical characteristics:
Weight:737g
Dimensions:128.9x96.9x80.8mm

Manufacturer description

SAN DIEGO, CA – January 26, 2021 – Sony Electronics, a global leader in imaging sensor technology and digital imaging, has announced the arrival of the groundbreaking new full-frame mirrorless Alpha 1 camera – asserting their commitment to leading the industry with a stunning combination of innovative new features.

The most technologically advanced, innovative camera that Sony has ever released, the Alpha 1 combines high-resolution and high-speed performance at a level that has never been accomplished in the world of digital cameras. With a brand new 50.1-megapixel full-frame stacked Exmor RS™ image sensor, up to 120 AF/AE calculations per second, 8K 30p 10-bit 4:2:0 video and much more, the Alpha 1 will allow creators to capture what they’ve never been able to before.

"We are always listening to our customers, challenging the industry to bring new innovation to the market that goes far beyond their expectations.” said Neal Manowitz, deputy president for Imaging Products and Solutions Americas at Sony Electronics. “Alpha 1 breaks through all existing boundaries, setting a new bar for what creators can accomplish with a single camera. What excites us the most – more than the extensive product feature – is Alpha 1's ability to capture that which has never been captured before. This camera unlocks a new world of creative possibilities, making the previously impossible now possible.”

The newly developed image sensor is built with integral memory and paired with an upgraded BIONZ XR imaging processing engine, making it capable of shooting 50.1-megapixel images continuously at an astounding 30fps with up to 120 AF/AE calculations per second. The Alpha 1’s shooting capabilities are further enhanced by a 9.44 million dot OLED Quad-XGA electronic viewfinder, with a refresh rate of up to 240 fps[xiv], ensuring no black out. Additionally, for the first time in an Alpha series camera, 8K 30p 10-bit 4:2:0 video is available. The Alpha 1 is also capable of 4K 120p / 60p 10-bit 4:2:2 recording and includes S-Cinetone color. The Alpha 1 is also packed with features that support field professionals with faster workflow, including 3.5 times faster wireless FTP transfer speed[xv] and more.

Unprecedented Resolution and Speed

Continuous Shooting at Up to 30 Frames Per Second

The Alpha 1 captures moments that would otherwise be lost thanks to its high-speed performance, providing any photographer the speed they require to capture fast-moving objects. High speed readout from the 50.1-megapixel image sensor and a large buffer memory make it possible to shoot up to 155 full-frame compressed RAW images[xvi] or 165 full-frame JPEG images[xvii] at up to 30 frames per second with the electronic shutter while maintaining full AF and AE tracking performance[xviii].

At an astonishing calculation speed of up to 120 AF/AE per second, the Alpha 1 can maintain focus with high accuracy even for fast moving subjects. It can automatically adjust exposure, even with sudden changes in brightness, with an AE response latency as low as 0.033 seconds[ii].

Advanced Electronic Viewfinder with the World’s Firstiv Refresh Rate of 240 fps

Complimenting the camera’s ability to capture images at an unprecedented speed, the Alpha 1 viewfinder features the world’s first[iv] 240 fps refresh ratexiv, for a super-smooth display. The viewfinder does not black out when an exposure is made to offer an uninterrupted view and allow for seamless framing and tracking, even during continuous shooting. The 9.44 million-dot (approx.), 0.64 type Quad-XGA high-definition OLED display and refined optics deliver the highest resolution in its classiv. It also offers 0.90x[xix] viewfinder magnification, a 41° diagonal FOV, and a 25mm-high eyepoint for clear, low distortion viewing from corner to corner.

Advanced Autofocus

Sony continues to push the boundaries of autofocus technology with the introduction of the Alpha 1, which can easily track complex, fast-moving subjects with high precision. The camera features 759 phase detection points in a high-density focal plane phase-detection AF system cover approximately 92% of the image area – ensuring accuracy and unfailing focus in environments where focusing might otherwise be difficult.

Sony’s advanced Real-time Eye AF improves detection performance by 30% over the previous system[i], thanks to the powerful image processing engine, BIONZ XR. It ensures accurate, reliable detection, even when the subject’s face looks away. In addition to improved Real-time Eye AF for humans and animals, the Alpha 1 employs high-level subject recognition technology to provide Real-time Eye AF for birds[xi], a first in an Alpha series camera. Optimized algorithms ensure that tracking is maintained even if a sitting bird suddenly takes flight, or the framing suddenly changes[xx].

The Alpha 1 also features AI-based Real-time Tracking that automatically maintains accurate focus. A subject recognition algorithm uses color, pattern (brightness), and subject distance (depth) data to process spatial information in real time at high speed.

Silent, Vibration-free Electronic Shutter

High-speed readout from the new image sensor has made it possible to reduce rolling shutter by up to 1.5 times when shooting stills, compared to the Alpha 9 II. It also offers silent anti-flicker continuous shooting with an electronic shutter for the first time[v] in the world. The electronic shutter[xxi] operates silently, without mechanical noise, and is vibration-free. Stress-free continuous shooting is now possible even when shooting in challenging lighting situations with florescent or other flicker-prone types of artificial lighting. And for the first time in an Alpha camera, electronic shutter flash sync up to 1/200 sec[xxii] is possible. The advantages of the electronic shutter advantages can now come to life even when using flash for broadly expanded shooting versatility.

Dual Driven Shutter System for 1/400 Flash Sync

The Alpha 1 boasts the world’s fastest flash sync speed[v] of 1/400 sec. with mechanical shutter, making it even easier to capture dynamic action. In addition to a carbon fiber shutter curtain, the Alpha 1 features the newly developed dual driven shutter system utilizing spring and electromagnetic drive actuator, offering high durability and lightness at the same time.

High Resolution Shooting Enhancements

Even with this sensor’s high pixel count, the Alpha 1 offers high sensitivity with low noise, plus 15+ stops of dynamic range for video and 15 stops for stills, for smooth, natural gradations from shadows to highlights thanks to its cutting-edge processing system, throughout a wide ISO sensitivity range of 100-32,000 (expandable to 50-102,400, when shooting stills).

Additionally, the new camera features an evolved Pixel Shift Multi Shooting mode that composites up to 16 full-resolution images. In this mode, the camera precisely shifts the sensor in one pixel or half-pixel increments to capture 16 separate pixel-shifted images containing a total of 796.2 million pixels of data, which are then composited into a 199 million pixel (17,280 x 11,520 pixels) image using Sony’s Imaging Edge™ desktop application. With a flash sync of up to 1/200 sec. in this mode, it is ideal for photographing architecture, art or any other still life subject with a level of detail and color accuracy that is simply stunning.

Professional Video Quality

8K High-resolution Movie Shooting

For the first time in an Alpha camera, the Alpha 1 offers 8K 30p 10-bit 4:2:0 XAVC HS recording with 8.6K oversampling for extraordinary resolution. Combined with Sony’s acclaimed autofocus technology, gradation and color reproduction performance, the Alpha 1 will help the user realize their creative vision with the finest detail. It’s 8K footage can also be used for flexible 4K editing during post-production.

Supporting Various Video Formats for Professionals

The Alpha 1 offers in-camera 4K recording at up to 120 frames per second[viii] which allows the user to shoot up to 5X slow-motion video[xxiii]. In addition to supporting 10-bit 4:2:2 recording, this feature can be used with efficient Long GOP inter-frame compression or high-quality Intra (All-I) intra-frame compression.

The Alpha 1 features S-Cinetone, the same color matrix that produces the highly regarded FX9 and FX6 color and skin tones. It delivers natural mid-tones, plus soft colors and gorgeous highlights to meet a growing need for more expressive depth. The S-Log3 gamma curve makes it possible to achieve 15+ stops of dynamic range, while the S-Gamut3 and S-Gamut3.Cine color gamut settings make it easy to match Alpha 1 footage with video shot on VENICE cinema camera, FX9 and other professional cinema cameras.

Heat-dissipating Structure

A unique heat dissipating structure keeps image sensor and image processing engine temperatures within their normal operating range, preventing overheating while maintaining compact body dimensions. This makes it possible to record 8K/30p video continuously for approximately 30 minutes[xxiv].

Supporting Hand-held Shooting

A high-precision stabilization unit and gyro sensors, plus optimized image stabilization algorithms, achieve up to a 5.5-step shutter speed advantage, maximizing the quality of the high-resolution images derived from the camera’s 50.1-megapixel sensor. The Alpha 1 also features an Active Mode[xxv] that offers outstanding stabilization for handheld movie shooting. When using Sony’s desktop applications Catalyst Browse or Catalyst Prepare[xxvi] for post-production, an accurate image stabilization function is available which utilizes metadata generated by camera's built-in gyro.

Other features that the Alpha 1 offers include; 16-bit RAW output[xxvii] to an external recorder[xxviii] via HDMI for maximum post-production flexibility, a digital audio interface has been added to the camera’s Multi Interface (MI) Shoe for clearer audio recordings from a compatible Sony external microphone, 5.8K oversampled full pixel readout without pixel binning for high-resolution 4K movies in Super 35mm mode and more.

Enhanced Workflow with Network Technologies including Connectivity to 5G Compatible Devices

The Alpha 1 has been designed and configured to support photo and video journalists and sports shooters who need to deliver stills or movies as quickly as possible with advanced connectivity options. It offers several features for fast, reliable file transfers. Industry’s fastest[xiii] built-in wireless LAN allows communication on 2.4 GHz and 5 GHz[xxix] bands with dual antennas to ensure reliable communications. 5 GHz includes 2x2 MIMO support (IEEE 802.11a/b/g/n/ac) offering 3.5 times faster wireless FTP transfer speed than the Alpha 9 II - a notable advantage for news and sports shooters who need to deliver with reliable speed. There is also a provided USB Type-C® connector to support fast data transfer when connected to a 5G mmWave compatible device such as Sony’s Xperia PRO and makes high-speed PC Remote (tethered) data transfer available for smooth handling of large image files. The Alpha 1 also has a built-in 1000BASE-T LAN connector for high-speed, stable data transfers, including remote shooting. FTPS (File Transfer over SSL/TLS) is supported, allowing SSL or TLS encryption for increased data security.

In addition to compressed and uncompressed RAW, the Alpha 1 includes efficient lossless compression with no quality degradation, Lossless Compressed RAW. There is also a new “Light” JPEG/HEIF image quality setting that results in smaller files than the “Standard” setting, allowing faster deliver for news and sports photographers who depend on speed. Along with a versatile range of RAW and JPEG formats, the Alpha 1 includes the HEIF (High Efficiency Image File) format for smooth 10-bit gradations that provide more realistic reproduction of skies and portrait subjects where subtle, natural gradation is essential. Images shot on the Alpha 1 can be trimmed in-camera to a desired aspect ratio, size, or position for versatile usage.

The Alpha 1 is also compatible with a variety of apps, add-ons and tools. With Imaging Edge Mobile and Imaging Edge Desktop[xxx], professionals can easily transfer RAW files and files that use lossless compression and remotely control Touch Tracking and Touch Focus for convenient AF operation. The Transfer & Tagging add-on (Ver. 1.3 or later) can automatically covert voice memos attached to image files to text captions or transfer the files to an FTP server from a mobile device. Desktop applications Catalyst Browse/Catalyst Prepare[xxvi] allow professionals to browse and manage video clips shot by Sony’s camera. In addition, the Remote Camera Tool[xxxi] can remotely change camera settings and shoot from a computer connected via LAN cable and feature a number of refinements for the Alpha 1: faster transfer, touch response, dual slot and HEIF support, and more.

Reliable and Easy Operability

Professional users need more than just refined features and performance. They also need the reliability and durability demanded of any professional tool. The Alpha 1 has two media slots that both support UHS-I and UHS-II SDXC/SDHC cards, as well as new CFexpress Type A cards for higher overall capacity and faster read/write speeds. It also features a durable magnesium alloy chassis, long battery life with the Z-battery which can be extended using the optional VG-C4EM Vertical Grip (sold separately), an improved dust removal feature, shutter close function on power-off to protect image sensor, plus dust and moisture resistance[xxxii] that maximizes reliability in challenging environments. It includes a durable, reliable HDMI Type-A connector, and USB PD (Power Delivery) support, allowing higher power to be supplied from an external source so that users can record for extended periods with minimal internal battery usage.

A revised menu structure provides easier navigation, and touch-responsive menu operation offers fast, more intuitive control with Touch Focus and Touch Tracking on its 3.0 type 1.44 million-dot (approx.) LCD monitor. For easy customization, a subset of the camera’s shooting settings now changes according to the selected shooting mode, making it easier than ever to use different aperture, shutter speed and other settings for shooting stills and movies.

Subscribe
Notify of
guest

Copy this code

and paste it here *

0 comments
Inline Feedbacks
View all comments

Copyright © 2012-2024 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

Chromatic aberration

There are two kinds of chromatic aberration: longitudinal and lateral. Longitudinal chromatic aberration is a variation in location of the image plane with changes in wave lengths. It produces the image point surrounded by different colors which result in a blurred image in black-and-white pictures. Lateral chromatic aberration is a variation in image size or magnification with wave length. This aberration does not appear at axial image points but toward the surrounding area, proportional to the distance from the center of the image field. Stopping down the lens has only a limited effect on these aberrations.

Spherical aberration

Spherical aberration is caused because the lens is round and the film or image sensor is flat. Light entering the edge of the lens is more severely refracted than light entering the center of the lens. This results in a blurred image, and also causes flare (non-image forming internal reflections). Stopping down the lens minimizes spherical aberration and flare, but introduces diffraction.

Astigmatism

Astigmatism in a lens causes a point in the subject to be reproduced as a line in the image. The effect becomes worse towards the corner of the image. Stopping down the lens has very little effect.

Coma

Coma in a lens causes a circular shape in the subject to be reproduced as an oval shape in the image. Stopping down the lens has almost no effect.

Curvature of field

Curvature of field is the inability of a lens to produce a flat image of a flat subject. The image is formed instead on a curved surface. If the center of the image is in focus, the edges are out of focus and vice versa. Stopping down the lens has a limited effect.

Distortion

Distortion is the inability of a lens to capture lines as straight across the entire image area. Barrel distortion causes straight lines at the edges of the frame to bow toward the center of the image, producing a barrel shape. Pincushion distortion causes straight lines at the edges of the frame to curve in toward the lens axis. Distortion, whether barrel or pincushion type, is caused by differences in magnification; stopping down the lens has no effect at all.

The term "distortion" is also sometimes used instead of the term "aberration". In this case, other types of optical aberrations may also be meant, not necessarily geometric distortion.

Diffraction

Classically, light is thought of as always traveling in straight lines, but in reality, light waves tend to bend around nearby barriers, spreading out in the process. This phenomenon is known as diffraction and occurs when a light wave passes by a corner or through an opening. Diffraction plays a paramount role in limiting the resolving power of any lens.

Doublet

Doublet is a lens design comprised of two elements grouped together. Sometimes the two elements are cemented together, and other times they are separated by an air gap. Examples of this type of lens include achromatic close-up lenses.

Dynamic range

Dynamic range is the maximum range of tones, from darkest shadows to brightest highlights, that can be produced by a device or perceived in an image. Also called tonal range.

Resolving power

Resolving power is the ability of a lens, photographic emulsion or imaging sensor to distinguish fine detail. Resolving power is expressed in terms of lines per millimeter that are distinctly recorded in the final image.

Vignetting

Vignetting is the darkening of the corners of an image relative to the center of the image. There are three types of vignetting: optical, mechanical, and natural vignetting.

Optical vignetting is caused by the physical dimensions of a multi-element lens. Rear elements are shaded by elements in front of them, which reduces the effective lens opening for off-axis incident light. The result is a gradual decrease of the light intensity towards the image periphery. Optical vignetting is sensitive to the aperture and can be completely cured by stopping down the lens. Two or three stops are usually sufficient.

Mechanical vignetting occurs when light beams are partially blocked by external objects such as thick or stacked filters, secondary lenses, and improper lens hoods.

Natural vignetting (also known as natural illumination falloff) is not due to the blocking of light rays. The falloff is approximated by the "cosine fourth" law of illumination falloff. Wide-angle rangefinder designs are particularly prone to natural vignetting. Stopping down the lens cannot cure it.

Flare

Bright shapes or lack of contrast caused when light is scattered by the surface of the lens or reflected off the interior surfaces of the lens barrel. This is most often seen when the lens is pointed toward the sun or another bright light source. Flare can be minimized by using anti-reflection coatings, light baffles, or a lens hood.

Ghosting

Glowing patches of light that appear in a photograph due to lens flare.

Retrofocus design

Design with negative lens group(s) positioned in front of the diaphragm and positive lens group(s) positioned at the rear of the diaphragm. This provides a short focal length with a long back focus or lens-to-film distance, allowing for movement of the reflex mirror in SLR cameras. Sometimes called an inverted telephoto lens.

Anastigmat

A photographic lens completely corrected for the three main optical aberrations: spherical aberration, coma, and astigmatism.

By the mid-20th century, the vast majority of lenses were close to being anastigmatic, so most manufacturers stopped including this characteristic in lens names and/or descriptions and focused on advertising other features (anti-reflection coating, for example).

Rectilinear design

Design that does not introduce significant distortion, especially ultra-wide angle lenses that preserve straight lines and do not curve them (unlike a fisheye lens, for instance).

Focus shift

A change in the position of the plane of optimal focus, generally due to a change in focal length when using a zoom lens, and in some lenses, with a change in aperture.

Transmittance

The amount of light that passes through a lens without being either absorbed by the glass or being reflected by glass/air surfaces.

Modulation Transfer Function (MTF)

When optical designers attempt to compare the performance of optical systems, a commonly used measure is the modulation transfer function (MTF).

The components of MTF are:

The MTF of a lens is a measurement of its ability to transfer contrast at a particular resolution from the object to the image. In other words, MTF is a way to incorporate resolution and contrast into a single specification.

Knowing the MTF curves of each photographic lens and camera sensor within a system allows a designer to make the appropriate selection when optimizing for a particular resolution.

Veiling glare

Lens flare that causes loss of contrast over part or all of the image.

Anti-reflection coating

When light enters or exits an uncoated lens approximately 5% of the light is reflected back at each lens-air boundary due to the difference in refractive index. This reflected light causes flare and ghosting, which results in deterioration of image quality. To counter this, a vapor-deposited coating that reduces light reflection is applied to the lens surface. Early coatings consisted of a single thin film with the correct refractive index differences to cancel out reflections. Multi-layer coatings, introduced in the early 1970s, are made up of several such films.

Benefits of anti-reflection coating:

Circular fisheye

Produces a 180° angle of view in all directions (horizontal, vertical and diagonal).

The image circle of the lens is inscribed in the image frame.

Diagonal (full-frame) fisheye

Covers the entire image frame. For this reason diagonal fisheye lenses are often called full-frame fisheyes.

Extension ring

Extension rings can be used singly or in combination to vary the reproduction ratio of lenses. They are mounted between the camera body and the lens. As a rule, the effect becomes stronger the shorter the focal length of the lens in use, and the longer the focal length of the extension ring.

View camera

A large-format camera with a ground-glass viewfinder at the image plane for viewing and focusing. The photographer must stick his head under a cloth hood in order to see the image projected on the ground glass. Because of their 4x5-inch (or larger) negatives, these cameras can produce extremely high-quality results. View cameras also usually support movements.

135 cartridge-loaded film

43.27 24 36
  • Introduced: 1934
  • Frame size: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm
  • Area: 864mm2
  • Double perforated
  • 8 perforations per frame

120 roll film

71.22 44 56
  • Introduced: 1901
  • Frame size: 56 × 44mm
  • Aspect ratio: 11:14
  • Diagonal: 71.22mm
  • Area: 2464mm2
  • Unperforated

120 roll film

79.2 56 56
  • Introduced: 1901
  • Frame size: 56 × 56mm
  • Aspect ratio: 1:1
  • Diagonal: 79.2mm
  • Area: 3136mm2
  • Unperforated

120 roll film

89.64 56 70
  • Introduced: 1901
  • Frame size: 70 × 56mm
  • Aspect ratio: 5:4
  • Diagonal: 89.64mm
  • Area: 3920mm2
  • Unperforated

220 roll film

71.22 44 56
  • Introduced: 1965
  • Frame size: 56 × 44mm
  • Aspect ratio: 11:14
  • Diagonal: 71.22mm
  • Area: 2464mm2
  • Unperforated
  • Double the length of 120 roll film

220 roll film

79.2 56 56
  • Introduced: 1965
  • Frame size: 56 × 56mm
  • Aspect ratio: 1:1
  • Diagonal: 79.2mm
  • Area: 3136mm2
  • Unperforated
  • Double the length of 120 roll film

220 roll film

89.64 56 70
  • Introduced: 1965
  • Frame size: 70 × 56mm
  • Aspect ratio: 5:4
  • Diagonal: 89.64mm
  • Area: 3920mm2
  • Unperforated
  • Double the length of 120 roll film

Shutter speed ring with "F" setting

The "F" setting disengages the leaf shutter and is set when using only the focal plane shutter in the camera body.

Catch for disengaging cross-coupling

The shutter and diaphragm settings are cross-coupled so that the diaphragm opens to a corresponding degree when faster shutter speeds are selected. The cross-coupling can be disengaged at the press of a catch.

Cross-coupling button

With the cross-coupling button depressed speed/aperture combinations can be altered without changing the Exposure Value setting.

M & X sync

The shutter is fully synchronized for M- and X-settings so that you can work with flash at all shutter speeds.

In M-sync, the shutter closes the flash-firing circuit slightly before it is fully open to catch the flash at maximum intensity. The M-setting is used for Class M flash bulbs.

In X-sync, the flash takes place when the shutter is fully opened. The X-setting is used for electronic flash.

X sync

The shutter is fully synchronized for X-setting so that you can work with flash at all shutter speeds.

In X-sync, the flash takes place when the shutter is fully opened. The X-setting is used for electronic flash.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.

Format

Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),

where:

CF – crop-factor of a sensor,
FL – focal length of a lens.

Mount

A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance can also be different.

The flange focal distance (FFD) is the distance from the mechanical rear end surface of the lens mount to the focal plane.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.

Speed

The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. Magnification is expressed as a ratio. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Electronic manual focus override is performed in the following way: half-press the shutter button, wait until the camera has finished the autofocusing and then focus manually without releasing the shutter button using the focusing ring.

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Fixed diaphragm

The aperture setting is fixed at F/ on this lens, and cannot be adjusted.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.

Weight

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.

Filters

Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.

Teleconverters

Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.

Lens caps

Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.