Zenza Bronica Fisheye ZENZANON-PE 30mm F/3.5

Fisheye lens • Film era • Discontinued

Zenza Bronica Fisheye ZENZANON-PE 30mm F/3.5


FISHEYE An ultra-wide angle lens with strong uncorrected barrel distortion and extreme 180-degree angle of view.

Features highlight

Extreme AoV
Built-in hood


Production details
Announced:October 1996
Production status: Discontinued
Original name:ZENZA BRONICA FISHEYE ZENZANON-PE 1:3.5 f=30mm
System:Bronica ETR (1976)
Optical design
Focal length:30mm
Maximum format:Medium format 6x4.5
Mount and Flange focal distance:Bronica ETR [69mm]
Lens construction:11 elements in 8 groups
Diaphragm mechanism
Diaphragm type:Automatic
Aperture control:Aperture ring (Manual settings only)
Number of blades:<No data>
Built-in leaf shutter
Type:Electronically controlled Seiko #0
Speeds:8 - 1/500 + T, B
Closest focusing distance:0.27m
Maximum magnification:<No data>
Focusing modes:Manual focus only
Manual focus control:Focusing ring
Physical characteristics
Maximum diameter x Length:⌀95×84.5mm
Filters:Removable front filters are not accepted
Screw-type 32.5mm (rear)
Lens hood:Built-in petal-shaped
Teleconverters:<No data>
Sources of data
1. Zenza Bronica ETRSi booklet (II).
2. Bronica medium format camera systems booklet (April 1998).

Manufacturer description #1


Photokina 96, Germany -- Tamron introduced the Zenzanon PE-30mm F/3.5 and PS-35mm F/3.5 full frame fish-eye lenses for Bronica ETRSi (6x4.5) and SQ-Ai (6x6) medium format cameras. These are the first full frame fish-eye lenses to be offered in the Zenzanon P-series. The lenses have a 108° diagonal angle of view and are capable of taking images with exaggerated special effects.

High optical performance was the critical factor in designing these two lenses and they have inherited the Zenzanon optical characteristics of high resolution and contrast. In all lenses, particularly fish-eye lenses, flare, especially in back-lit situations, and aberrations can be problematical. However, an internal lens hood and the application of Tamron's exclusive BBAR (Broad-Band Anti-Reflection) multi-layer coating suppress optical aberrations such as flare and ghosting. The resulting images are high contrast with sufficient corner illumination and enhanced light transmission for distinguishably crisp color rendition.

Close-focusing for special effect photography with exaggerated perspective is realized with a minimum object distance of 0.27 meters for the PE-30mm lens and 0.28 meters for the PS-35mm lens.

The lenses are supplied with an exclusive four filter set that consists of: L-1B/skylight; LA-40/for converting color temperature/compensation of blue color on overcast days; LB-40/for converting color temperature/ compensation of red color in the morning or at sunset; and neutral density. The filters are packaged in an exclusive filter case.

Manufacturer description #2

PMA '97, New Orleans

In other news for Bronica users, Tamron has introduced the first full-frame fish-eye lenses in the Zenzanon P-series for Bronica medium format cameras. The Zenzanon PE-30mm F/3.5 and PS-35mm F/3.5 full frame fish-eye lenses are for Bronica ETRSi (6x4.5) and SQ-Ai (6x6) medium format cameras. The lenses have a 108° diagonal angle of view and are capable of producing images with exaggerated special effects.

Both lenses have inherited the Zenzanon optical characteristics of high resolution and contrast. Flare and aberrations, especially problematical in fish-eye lenses, are suppressed through the use of an internal lens hood and the application of Tamron's exclusive BBAR (Broad-Band Anti-Reflection) multi-layer coating. The resulting images are high-contrast with sufficient corner illumination and enhanced light transmission for crisp color rendition.

Close-focusing for special effect photography with exaggerated perspective is realized with a minimum object distance of 10.6 inches (0.27 meters) for the PE-30mm lens and 11 inches (0.28 meters) for the PS-35mm lens.

Manufacturer description #3

For the ultimate in wide angle, the PE 30 F3.5 is true full frame fish eye, incorporating a diagonal view of 180 degrees. Utilizing the latest in Broad Band Anti Reflective coating technology, flare and chromatic aberrations are greatly suppressed. The lens allows for unique images in landscape, commercial and portrait photography and had a growing demand for usage in weddings.

Typical application


Slow 6x4.5 medium-format fisheye lensProfessional model (Top class)

fisheye lens

A fisheye lens is a type of ultra-wide angle lenses with extreme 180 degree angle of view. Unlike conventional wide-angle lenses, fisheyes are not corrected for distortion - strong barrel distortion is a characteristic of all lenses of such class.

Fisheye lenses are normally used for specialized purposes and unusual special effects in advertising, commercial, scientific, surveillance, meteorologic and astronomic photography, but also popular for shooting extremely wide landscapes, interiors, action sports and even funny close-up portraits.

There are two types of fisheye lenses:

  • a circular fisheye produces a 180 degree angle of view in all directions (horizontal, vertical and diagonal) and the image circle of the lens is inscribed in the image frame;
  • a diagonal fisheye produces a 180 degree diagonal angle of view and covers the entire image frame. For this reason diagonal fisheyes are often called full frame fisheye lenses.

Professional model (Top class)

  • Designed for medium format cameras

Genres or subjects of photography (2):

Scientific photography • Industrial photography

Recommended slowest shutter speed when shooting static subjects handheld:

1/30th of a second

Notify of

Copy this code

and paste it here *

Inline Feedbacks
View all comments

Copyright © 2012-2023 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

35mm full frame

43.27 24 36
  • Dimensions: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm
  • Area: 864mm2


Sorry, no additional information is available.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.


Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),


CF – crop-factor of a sensor,
FL – focal length of a lens.


A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance can also be different.

The flange focal distance (FFD) is the distance from the mechanical rear end surface of the lens mount to the focal plane.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.


The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Fixed diaphragm

The aperture setting is fixed at F/3.5 on this lens, and cannot be adjusted.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.


Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.


Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.


Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.

Lens caps

Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.