Tamron SP 15-30mm F/2.8 Di [VC] USD A012

Wide-angle zoom lens • Pro • Digital era • Discontinued

Tamron SP 15-30mm F/2.8 Di [VC] USD A012

Sample photos

30mm F/2.8
15mm F/13
15mm F/2.8
28mm F/2.8
15mm F/2.8
19mm F/11
15mm F/11
15mm F/7.1
15mm F/6.3
15mm F/2.8
20mm F/9
19mm F/9
15mm F/8

Sample photos uploaded by users

15mm F/4.5
17mm F/2.8
15mm F/2.8
25mm F/6.3
15mm F/6.3

Abbreviations

SP Professional lens with high quality optics and robust build. Meets the highest standards and provides excellent performance and flawless image quality unachievable with traditional optical technologies.
DI The lens is designed for 35mm digital SLR cameras but can be also used on APS-C digital SLR cameras.
VC The lens is equipped with Vibration Compensation system.
USD The lens is equipped with Ultrasonic Silent Drive.

Production details

Announced:September 2014
Production type:Mass production
Production status: Discontinued
Original name:TAMRON SP 15-30mm F/2.8 USD Di VC A012
TAMRON SP 15-30mm F/2.8 USD Di A012
System:-

Model history (2)

Tamron SP 15-30mm F/2.8 Di [VC] USD A012A18 - 130.28m-- 2014 
Tamron SP 15-30mm F/2.8 Di VC USD G2 A041A18 - 130.28m-- 2018 

Features highlight

Extreme AoV @ 15-23mm
Fast
Constant
F/2.8
2
ASPH
1
XGM
3
LD
IF
9 blades
USD
MFO
VC
VC
Mode 1
WR
FC
IZ
Built-in hood

Specification

Optical design
Focal length range:15mm - 30mm [2X zoom ratio]
Speed range:F/2.8 across the focal length range
Maximum format:35mm full frame
Mount and Flange focal distance:Canon EF [44mm]
Minolta/Sony A [44.5mm]
Nikon F [46.5mm]
Diagonal angle of view:110.5° @ 15mm - 71.6° @ 30mm
Lens construction:18 elements - 13 groups
2 ASPH, 1 XGM, 3 LD
Internal focusing (IF)
Diaphragm mechanism
Diaphragm type:Automatic
Aperture control:None; the aperture is controlled from the camera
Number of blades:9 (nine)
Zooming
Zoom mechanism:Manual
Zoom control:Zoom ring
Zoom type:Rotary
Zooming method:Internal zooming
Focusing
Closest focusing distance:0.28m
Maximum magnification ratio:1:5 @ 30mm at the closest focusing distance
Focusing modes:Autofocus, manual focus
Manual focus control:Focusing ring
Autofocus motor:Ultrasonic Silent Drive
Focus mode selector:AF - MF
Manual focus override in autofocus mode:Yes
Vibration Compensation (VC)
Built-in VC:Canon EF (Yes)
Nikon F (Yes)
VC features:Mode 1
VC efficiency:<No data>
Physical characteristics
Weight:1100g (Nikon F)
Maximum diameter x Length:⌀98.4×142.5mm (Nikon F)
Weather sealing:Water-resistant barrel
Fluorine coating:Front element
Accessories
Filters:Removable front filters are not accepted
Lens hood:Built-in petal-shaped
Teleconverters:Not compatible

*) Source of data: Manufacturer's technical data.

**) Some basic information is missing in the specification as it was not provided by the manufacturer.

35mm equivalent focal length range and speed (on APS-C cameras)

In terms of FoV & DoF
Camera series [Crop factor] Focal length SpeedMax MR Dia. angle of view
Canon EOS APS-C [1.59x] 23.9mm - 47.7mm F/4.51:3.14 84.4° @ 15mm - 48.8° @ 30mm
Sony DSLR-A/SLT-A APS-C [1.53x] 23mm - 45.9mm F/4.31:3.27 86.6° @ 15mm - 50.5° @ 30mm
Nikon D APS-C [1.53x] 23mm - 45.9mm F/4.31:3.27 86.6° @ 15mm - 50.5° @ 30mm

Manufacturer description

Tamron aims for the highest standards with the SP (Super Performance) lens series. And the new 15-30mm F/2.8 full-frame ultra-wide-angle zoom is a worthy addition.

This high-performance zoom lens equals the performance of fixed focal length lenses from 15mm to 30mm, an unprecedented achievement made possible by the development of its unique XGM (eXpanded Glass Molded Aspherical) lens element that effectively controls aberrations and enhances sharpness. In addition, the 15-30mm is the first zoom to combine such a wide range of coverage, a fast F/2.8 aperture, and to offer image stabilization, further proof of Tamron's commitment to innovation and excellence.

A large diameter XGM (eXpanded Glass Molded Aspherical) lens element is placed in the first lens group of a system that also includes several LD (Low Dispersion) elements in its 18-element, 13-group optical design. This combination effectively controls distortion and chromatic aberrations that typically affect wide-angle lenses.

Tamron's proprietary eBAND (Extended Bandwidth & Angular-Dependency) Coating suppresses tangential reflections, while a new generation of BBAR (Broad-Band Anti-Reflection) Coating has been optimized for ultra-wide angles of view. Together, they effectively correct ghosting and flare, yielding vivid images of extraordinary clarity.

Responding to the demand for a wide-angle lens suited for handheld shooting at slow shutter speeds, Tamron has created the world's first F/2.8 ultra-wide-angle zoom lens with image stabilization. The result is a lens able to capture sharp images even when shooting handheld under low light conditions.

This system employs three coils that move the optical compensation system electromagnetically via three ceramic ball bearings. It offers excellent stability and enables smooth movement with little friction. When equipping 15-30mm with VC, the design of the VC unit was optimized for a fast F/2.8 aperture ultra-wide-angle zoom lens.

The VC unit was made compact to prevent the body of the lens from becoming too large when equipping this fast F/2.8 aperture ultra-wide-angle zoom lens with the Vibration Compensation mechanism. Each VC unit is exclusively designed and optimized for each lens that incorporates this exclusive feature.

Since its large diameter and prominent convex profile prevents deployment of a protective filter, the front element of this lens has a fluorine coating that repels water and dirt, and makes it much easier to remove smudges as well.

Moisture-resistant construction helps prevent moisture from penetrating the lens.

The quiet high-torque USD motor ensures autofocusing with precision.

The lens offers the high levels of durability and operability expected in an SP lens, based on its exacting design specifications. Many of the components used in the lens' drive unit, such as those in the zoom and focus mechanisms, are made of metal (aluminum alloy). Their high level of manufacturing and assembly precision has resulted in a high-precision lens body that resists wear and deterioration over time. The zoom ring uses zoom mechanisms and cam arrangements refined over the course of Tamron's long history of high-power zoom lens development, providing smooth operation under variable torque. The focus ring employs a holding mechanism optimized for the USD (Ultrasonic Silent Drive), offering smooth torque during MF operation.

The integrated lens hood features a unique Tamron zoom-linked double-hood design which resists physical shocks such as accidental drops. It is designed to minimize damage to the lens.

This unique lens hood provides effective shading of the front lens surface over the entire zoom range to minimize flare. It utilizes the unique characteristics of the optical system in which the front lens group recedes as you zoom in from 15mm to 30mm.

Using state-of-the-art optical design, the lens provides advanced compensation for the optical aberrations common with ultra-wide-angle lenses, such as distortion and lateral chromatic aberration. In particular, lateral chromatic aberration is accurately corrected by using concave LD elements. This provides clear images with high resolution and enables high quality wide-angle images.

The high sharpness and contrast provided by this lens make it possible to accurately capture even the finest details of the subject. The superior imaging capability of the lens renders point light sources as sharp points, even in peripheral areas. This lens is therefore perfect for landscape, night, and astrophotography, all of which require high resolution across the entire frame.

This lens also takes into account the appearance of the areas at the corners of the frame. The clearly protruding front lens has a deep curvature designed to prevent peripheral light fall off. Even at its maximum aperture, there is very little observable or measurable peripheral light fall off.

Thanks to its large F/2.8 aperture, this lens lets you soften the foreground or background to dramatically emphasize the subject. And with a minimum focusing distance of 0.28m over its entire focal-length range, it can capture wide-macro effects.

The 9-blade diaphragm construction stays a nearly circular aperture even when stopped down two steps from its maximum aperture. It therefore maintains its ability to capture soft bokeh effects even when the aperture is stopped down.

At wide-angle focal length of 15mm, this lens enables photographers to capture an expansive perspective exceeding the angle of vision. At its long focal length of 30mm, it provides a semi-wide angle of view that is convenient for snapshots. By making the zoom magnification 2x while maintaining image quality, it is possible to provide both powerful capabilities in the ultra-wide-angle range and the natural expression of a semi-wide-angle, all in an eminently convenient package.

Typical application

Class:

Fast full-frame wide-angle zoom lens • Professional model (Top class)

Professional model (Top class)

  • Combination of focal length range and speed meets professional demands
  • Water-resistant barrel
  • Ultrasonic Silent Drive

Missing features (1):

Lighter weight

Genres or subjects of photography (10):

Landscapes • Cityscapes • Buildings • Interiors • Full to mid-body portraits • Photojournalism • Weddings • Parties • Carnivals • Live concerts

Recommended slowest shutter speed when shooting static subjects handheld:

1/30th of a second @ 30mm (VC OFF) • 1/15th of a second @ 15mm (VC OFF)

Lenses with similar focal length range

///// Sorted by manufacturer name /////

Subscribe
Notify of
guest

Copy this code

and paste it here *

0 comments
Inline Feedbacks
View all comments
Share
Clickable
Table of contents
Clickable
Pros and cons
Instruction manual
Clickable
Tamron Di series lenses (34)
Clickable

Copyright © 2012-2022 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

35mm full frame

43.27 24 36
  • Dimensions: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm
  • Area: 864mm2

Ultrasonic Silent Drive

Ultrasonic Silent Drive

Ultrasonic Silent Drive

AF - MF

AFAutofocus mode.
MFManual focus mode.

Aspherical elements

Aspherical elements (ASPH, XA, XGM) are used in wide-angle lenses for correction of distortion and in large-aperture lenses for correction of spherical aberration, astigmatism and coma, thus ensuring excellent sharpness and contrast even at fully open aperture. The effect of the aspherical element is determined by its position within the optical formula: the more the aspherical element moves away from the aperture stop, the more it influences distortion; close to the aperture stop it can be particularly used to correct spherical aberration. Aspherical element can substitute one or several regular spherical elements to achieve similar or better optical results, which allows to develop more compact and lightweight lenses.

Use of aspherical elements has its downsides: it leads to non-uniform rendering of out-of-focus highlights. This effect usually appears as "onion-like" texture of concentric rings or "wooly-like" texture and is caused by very slight defects in the surface of aspherical element. It is difficult to predict such effect, but usually it occurs when the highlights are small enough and far enough out of focus.

Low dispersion elements

Low dispersion elements (ED, LD, SD, UD etc) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. This type of glass exhibits low refractive index, low dispersion, and exceptional partial dispersion characteristics compared to standard optical glass. Two lenses made of low dispersion glass offer almost the same performance as one fluorite lens.

Low dispersion elements

Low dispersion elements (ED, LD, SD, UD etc) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. This type of glass exhibits low refractive index, low dispersion, and exceptional partial dispersion characteristics compared to standard optical glass. Two lenses made of low dispersion glass offer almost the same performance as one fluorite lens.

Canon's Super UD, Nikon's Super ED, Pentax' Super ED, Sigma's FLD ("F" Low Dispersion), Sony' Super ED and Tamron's XLD glasses are the highest level low dispersion glasses available with extremely high light transmission. These optical glasses have a performance equal to fluorite glass.

High-refraction low-dispersion elements

High-refraction low-dispersion elements (HLD) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

High Index, High Dispersion elements

High Index, High Dispersion elements (HID) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

Anomalous partial dispersion elements

Anomalous partial dispersion elements (AD) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

Fluorite elements

Synthetic fluorite elements (FL) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. Compared with optical glass, fluorite lenses have a considerably lower refraction index, low dispersion and extraordinary partial dispersion, and high transmission of infrared and ultraviolet light. They are also significantly lighter than optical glass.

According to Nikon, fluorite easily cracks and is sensitive to temperature changes that can adversely affect focusing by altering the lens' refractive index. To avoid this, Canon, as the manufacturer most widely using fluorite in its telephoto lenses, never uses fluorite in the front and rear lens elements, and the white coating is applied to the lens barrels to reflect light and prevent the lens from overheating.

Short-wavelength refractive elements

High and specialized-dispersion elements (SR) refract light with wavelengths shorter than that of blue to achieve highly precise chromatic aberration compensation. This technology also results in smaller and lighter lenses.

Blue Spectrum Refractive Optics

Organic Blue Spectrum Refractive Optics material (BR Optics) placed between convex and concave elements made from conventional optical glass provides more efficient correction of longitudinal chromatic aberrations in comparison with conventional technology.

Diffraction elements

Diffraction elements (DO, PF) cancel chromatic aberrations at various wavelengths. This technology results in smaller and lighter lenses in comparison with traditional designs with no compromise in image quality.

High refractive index elements

High refractive index elements (HR, HRI, XR etc) minimize field curvature and spherical aberration. High refractive index element can substitute one or several regular elements to achieve similar or better optical results, which allows to develop more compact and lightweight lenses.

Apodization element

Apodization element (APD) is in fact a radial gradient filter. It practically does not change the characteristics of light beam passing through its central part but absorbs the light at the periphery. It sort of softens the edges of the aperture making the transition from foreground to background zone very smooth and results in very attractive, natural looking and silky smooth bokeh.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.

Format

Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),

where:

CF – crop-factor of a sensor,
FL – focal length of a lens.

Mount

A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance can also be different.

The flange focal distance (FFD) is the distance from the mechanical rear end surface of the lens mount to the focal plane.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.

Speed

The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Electronic manual focus override is performed in the following way: half-press the shutter button, wait until the camera has finished the autofocusing and then focus manually without releasing the shutter button using the focusing ring.

Fixed focus

There is no helicoid in this lens and everything is in focus from the closest focusing distance to infinity.

Internal focusing (IF)

Conventional lenses employ an all-group shifting system, in which all lens elements shift during focusing. The IF system, however, shifts only part of the optics during focusing. The advantages of the IF system are:

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Fixed diaphragm

The aperture setting is fixed at F/2.8 on this lens, and cannot be adjusted.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.

Weight

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.

Filters

Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.

Teleconverters

Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.

Lens caps

Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.

Rotary zoom

The change of focal length is achieved by turning the zoom ring and the manual focusing - by turning the separate focusing ring.

Push/pull zooming allows for faster change of focal length, however conventional method based on the rotation of the zoom ring provides more accurate and smooth zooming.

Push/pull zoom

The change of focal length happens when the photographer moves the ring towards the mount or backwards.

Push/pull zooming allows for faster change of focal length, however conventional method based on the rotation of the zoom ring provides more accurate and smooth zooming.

Zoom lock

The lens features a zoom lock to keep the zoom ring fixed. This function is convenient for carrying a camera with the lens on a strap because it prevents the lens from extending.

Zoom clutch

To set the manual zoom mode, pull the zoom ring towards the camera side until the words "POWER ZOOM" disappear.

Efficiency of image stabilizer

The efficiency of image stabilizer is measured in stops and each stop corresponds to a two-times increase of shutter speed. For example, if you are shooting at focal length of 80mm and it is known that the efficiency of image stabilizer is 3 stops, it means that during handheld shooting at such focal length you can use shutter speed of 1/10 second which is exactly 23 times longer than the shutter speed 1/80 second needed to obtain sharp image in sufficient lighting conditions.

Hybrid IS

The image stabilizer has Hybrid IS technology which corrects not only angle but also shift camera shake, which is more pronounced in close-range shooting when a camera moves parallel to the imaging scene. Hybrid IS dramatically enhances the effects of image stabilization during shooting, including macro shooting, which had proven difficult for conventional image stabilization technologies.

XY-Shift

The image stabilizer has XY-Shift technology which corrects not only angle but also shift camera shake, which is more pronounced in close-range shooting when a camera moves parallel to the imaging scene. XY-Shift dramatically enhances the effects of image stabilization during shooting, including macro shooting, which had proven difficult for conventional image stabilization technologies.

Dynamic IS

The image stabilizer has Dynamic IS technology which especially effective when shooting while walking because it compensates strong camera shake. Dynamic IS activates automatically when the camera is set to movie shooting.

Mode 1

Corrects vertical and horizontal camera shake. Mainly effective for shooting still subjects.

Mode 2

Corrects vertical camera shake during following shots in a horizontal direction. Corrects horizontal camera shake during following shots in a vertical direction.

Mode 2

Corrects vertical camera shake during following shots in a horizontal direction.

Mode 2 (Intelligent OS)

The lens incorporates Intelligent OS with algorithm capable of panning in all directions. In Mode 2, the movements of subjects can be captured with panning effects even when the camera is moved horizontally, vertically, or diagonally — regardless of the position of the lens.

Mode 3

Corrects camera shake only during exposure. During panning shots, corrects camera shake during exposure only in one direction the same as Mode 2. Effective for following fast and irregulary moving subjects.

Panning Detection

The image stabilizer automatically detects panning and then corrects camera shake only in one direction.

Tripod Detection

It is often thought that image blur caused by camera shake can be prevented by using a tripod. Actually, however, even using a tripod may result in image blur because of tripod vibration caused by mirror or shutter movement at the time of exposure. The image stabilizer automatically differentiates the frequency of the vibration from that of camera shake, and changes algorithm to correct image blur caused by slight tripod vibration.

VR NORMAL

Corrects vertical and horizontal camera shake. Automatically detects panning and then corrects camera shake only in one direction.

VR ACTIVE

Corrects vertical and horizontal camera shake when shooting from a moving vehicle, or some other unstable position. Panning is not detected.

VR SPORT

Allows a continuous shooting frame rate and release time lag similar to those that are possible when image stabilizer is turned off. Automatically detects panning and then corrects camera shake only in one direction.

VR TRIPOD

It is often thought that image blur caused by camera shake can be prevented by using a tripod. Actually, however, even using a tripod may result in image blur because of tripod vibration caused by mirror or shutter movement at the time of exposure. The image stabilizer automatically differentiates the frequency of the vibration from that of camera shake, and changes algorithm to correct image blur caused by slight tripod vibration.