Sigma 14mm F/1.8 DG HSM | A

Ultra-wide angle prime lens • Digital era

DG The lens is designed for 35mm full-frame digital cameras but can be also used on APS-C digital cameras.
HSM The lens is equipped with Hyper Sonic Motor.
| A Belongs to the Art series lenses.

Features highlight

Extreme AoV
Fast
4 ASPH
3 FLD
4 SLD
9 blades
HSM
MFO
WR mount
Built-in hood

Compatibility

  • EMD lenses are not compatible with Nikon D2- or D1-series, D200, D100, D90, D80, D70, D70s, D60, D50, D40, D40X, D3000 digital SLR cameras and Nikon film SLR cameras.

Specification

Production details
Announced:February 2017
Production status:In production
Production type:Mass production
Original name:SIGMA 14mm 1:1.8 DG A
Optical design
Focal length:14mm
Speed:F/1.8
Maximum format:35mm full frame
Mount:Canon EF
Nikon F
Sigma SA
Sony E
Diagonal angle of view:114.2° (35mm full frame)
101.6° (Canon EF APS-H)
90.5° (Nikon F APS-C)
83.2° (Sigma SA APS-C)
90.5° (Sony E APS-C)
Lens construction:16 elements - 11 groups
4 ASPH, 3 FLD, 4 SLD
Convex protruding front element
Diaphragm mechanism
Diaphragm control system:Electromagnetic (Canon EF, Nikon F, Sigma SA)
Number of blades:9
Focusing
Closest focusing distance:0.27m
Maximum magnification ratio:1:9.8 at the closest focusing distance
Focusing method:<No information>
Focusing modes:Autofocus, manual focus
Manual focus control:Focusing ring
Autofocus motor:Hyper Sonic Motor
Focus mode selector:AF/MF
Manual focus override in autofocus mode:Yes (Canon EF, Nikon F, Sigma SA)
Determined by the camera (Sony E)
Optical Stabilizer (OS)
Built-in OS:-
Physical characteristics
Weight:1170g (Sigma SA)
Maximum diameter x Length:⌀95.4×126mm (Sigma SA)
Weather sealing:Water-resistant mount
Fluorine coating:-
Accessories
Filters:Removable front filters are not accepted
Lens hood:Built-in petal-shaped

*) Source of data: Manufacturer's technical data.

Manufacturer description

In taking photographs of starry skies or other celestial scenes at night, or of the seashore with a wide perspective, a large-diameter lens is a strong ally, since it allows the capture of a moving subject by adjusting shutter speed without relying on ISO sensitivity. With its full-frame 35mm coverage, 14mm focal length for an ultra-wide angle of view, F2 barrier-breaking F1.8, the SIGMA 14mm F1.8 DG HSM | Art is the true high-speed ultra-wide-angle lens for which so many photographers have been waiting. Although some zoom lenses are available that can cover 14mm, the large diameter delivering F1.8 brightness is a singular advantage. Going beyond fast shutter speed, this lens can capture a swarm of fireflies with crystal clarity, a beautiful bokeh effect, and outstanding control of light streaking.

By leveraging its extreme angle of view and the dramatic perspective this creates, an ultra-wide-angle lens can get up close and personal with a subject while at the same time taking in a vast background—an example of photography going beyond normal human vision.

SIGMA 14mm F1.8 DG HSM | Art combines the extremely deep depth of field that comes from an ultra-wide angle of view with the extremely shallow depth of field that comes from F1.8 brightness. The result is a sharply captured subject set against a vast background dramatically blurred with a beautiful bokeh effect. It’s a highly impressive mode of photographic expression that until now simply hasn’t existed.

Three FLD (“F” Low Dispersion) glass elements and four SLD (Super Low Dispersion) glass elements help minimize transverse chromatic aberration, which tends to be noticeable in shots taken with ultra-wide-angle lenses. Offering excellent peripheral brightness, this lens delivers outstanding image quality from the center to the edges.

Serving as the front lens element, the large φ80mm precision-molded glass aspherical lens effectively minimizes distortion. Offering excellent peripheral brightness, this lens delivers outstanding image quality from the center to the edges.

The SIGMA 12-24mmF4 DG HSM | Art was the first SIGMA lens to feature a large φ80mm aspherical lens element. Building on the expertise derived from this success, the new lens features a large ⌀80mm precision-molded glass aspherical lens as its front element. This technology has made possible the 14mm F1.8 specification—the first of its kind.

Even at the 14mm ultra-wide-angle of view, F1.8 brightness makes possible a very shallow depth of field with the subject standing out dramatically against a bokeh background. It’s the unique mode of expression that only a large-diameter lens can deliver.

A large HSM, AF with full-time manual focus and all of SIGMA’s latest design and manufacturing technologies help deliver an entirely new visual experience.

The large hypersonic motor (HSM) delivers ample torque to the focusing group for outstanding speed, ensuring exceptionally stable performance even at lower speeds. Along with the optimized AF algorithm, this feature delivers fast autofocus photography.

Full-time manual focus function allows the lens to be switched to manual focus simply by rotating the focus ring.

The Nikon mount version of this lens includes an electromagnetic diaphragm mechanism that allows it to receive the appropriate signals from the camera body. This feature ensures precision diaphragm control and stable Auto Exposure (AE) performance during continuous shooting.

Since the area of the lens most vulnerable to dust and other foreign bodies is the mount, rubber sealing* helps provide peace of mind. In addition, the front lens element features a water- and oil-repellant coating that helps the lens perform well in the rain, near water, and in other challenging conditions.

* Except for SIGMA mount

The 9-blade rounded diaphragm creates an attractive blur in the out-of-focus areas of the image.

Typical application

landscapes, interiors, buildings, cityscapes

Samyang AF 14mm F/2.8 EF / F (Rokinon)

Samyang AF 14mm F/2.8 EF / F (Rokinon)
  • Advantages: 1
  • Disadvantages: 1

Samyang AF 14mm F/2.8 EF / F (Rokinon)

Sony FE 14mm F/1.8 GM (SEL14F18GM)

Lenses with similar focal length

Sorted by manufacturer name

Best ultra-wide angle prime lenses

The higher a lens is on the list, the better it is in its class

Your comment

Copy this code

and paste it here *

Copyright © 2012-2021 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

35mm full frame

43.27 24 36
  • Dimensions: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm

Travellers' choice

Note

Among autofocus lenses designed for 35mm full-frame mirrorless cameras only. Speed of standard and telephoto lenses is taken into account.

Professional lens

One of the best ultra-wide angle prime lenses

According to lens-db.com; among lenses designed for the same maximum format and mount.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Hyper Sonic Motor

Sorry, no additional information is available.

Hyper Sonic Motor

Sorry, no additional information is available.

Hyper Sonic Motor

Sorry, no additional information is available.

Hyper Sonic Motor

Sorry, no additional information is available.

AF/MF

AFAutofocus mode.
MFManual focus mode.

Aspherical elements

Aspherical elements (ASPH, XA, XGM) are used in wide-angle lenses for correction of distortion and in large-aperture lenses for correction of spherical aberration, astigmatism and coma, thus ensuring excellent sharpness and contrast even at fully open aperture. The effect of the aspherical element is determined by its position within the optical formula: the more the aspherical element moves away from the aperture stop, the more it influences distortion; close to the aperture stop it can be particularly used to correct spherical aberration. Aspherical element can substitute one or several regular spherical elements to achieve similar or better optical results, which allows to develop more compact and lightweight lenses.

Use of aspherical elements has its downsides: it leads to non-uniform rendering of out-of-focus highlights. This effect usually appears as "onion-like" texture of concentric rings or "wooly-like" texture and is caused by very slight defects in the surface of aspherical element. It is difficult to predict such effect, but usually it occurs when the highlights are small enough and far enough out of focus.

Low dispersion elements

Low dispersion elements (ED, LD, SD, UD etc) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. This type of glass exhibits low refractive index, low dispersion, and exceptional partial dispersion characteristics compared to standard optical glass. Two lenses made of low dispersion glass offer almost the same performance as one fluorite lens.

Low dispersion elements

Low dispersion elements (ED, LD, SD, UD etc) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. This type of glass exhibits low refractive index, low dispersion, and exceptional partial dispersion characteristics compared to standard optical glass. Two lenses made of low dispersion glass offer almost the same performance as one fluorite lens.

Canon's Super UD, Nikon's Super ED, Pentax' Super ED, Sigma's FLD ("F" Low Dispersion), Sony' Super ED and Tamron's XLD glasses are the highest level low dispersion glasses available with extremely high light transmission. These optical glasses have a performance equal to fluorite glass.

High-refraction low-dispersion elements

High-refraction low-dispersion elements (HLD) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

High Index, High Dispersion elements

High Index, High Dispersion elements (HID) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

Anomalous partial dispersion elements

Anomalous partial dispersion elements (AD) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

Fluorite elements

Synthetic fluorite elements (FL) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. Compared with optical glass, fluorite lenses have a considerably lower refraction index, low dispersion and extraordinary partial dispersion, and high transmission of infrared and ultraviolet light. They are also significantly lighter than optical glass.

According to Nikon, fluorite easily cracks and is sensitive to temperature changes that can adversely affect focusing by altering the lens' refractive index. To avoid this, Canon, as the manufacturer most widely using fluorite in its telephoto lenses, never uses fluorite in the front and rear lens elements, and the white coating is applied to the lens barrels to reflect light and prevent the lens from overheating.

Short-wavelength refractive elements

High and specialized-dispersion elements (SR) refract light with wavelengths shorter than that of blue to achieve highly precise chromatic aberration compensation. This technology also results in smaller and lighter lenses.

Blue Spectrum Refractive Optics

Organic Blue Spectrum Refractive Optics material (BR Optics) placed between convex and concave elements made from conventional optical glass provides more efficient correction of longitudinal chromatic aberrations in comparison with conventional technology.

Diffraction elements

Diffraction elements (DO, PF) cancel chromatic aberrations at various wavelengths. This technology results in smaller and lighter lenses in comparison with traditional designs with no compromise in image quality.

High refractive index elements

High refractive index elements (HR, HRI, XR etc) minimize field curvature and spherical aberration. High refractive index element can substitute one or several regular elements to achieve similar or better optical results, which allows to develop more compact and lightweight lenses.

Apodization element

Apodization element (APD) is in fact a radial gradient filter. It practically does not change the characteristics of light beam passing through its central part but absorbs the light at the periphery. It sort of softens the edges of the aperture making the transition from foreground to background zone very smooth and results in very attractive, natural looking and silky smooth bokeh.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.

Format

Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),

where:

CF – crop-factor of a sensor,
FL – focal length of a lens.

Mount

A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance from the lens mount to the film or sensor can also be different.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Flange focal distance

The flange focal distance (FFD), sometimes called the "flange back", is the distance from the mechanical rear end surface of the lens mount to the focal plane.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.

Speed

The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Electronic manual focus override is performed in the following way: half-press the shutter button, wait until the camera has finished the autofocusing and then focus manually without releasing the shutter button using the focusing ring.

Electromagnetic diaphragm control system

Provides highly accurate diaphragm control and stable auto exposure performance during continuous shooting.

Convex protruding front element

The convex front element protrudes from the lens barrel, making it impossible to use filters.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.

Weight

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.

Filters

Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.