10th Anniversary 2012-2022
More than just a camera lens database
Third-party lens

Schneider-KREUZNACH PC-TS Makro-Symmar 90mm F/4 HM

Shift lens • Digital era • Discontinued

Schneider-KREUZNACH PC-TS Makro-Symmar 90mm F/4 HM

Abbreviations

PC-TS Perspective Control lens.
MAKRO Macro lens. Designed specially for shooting close-ups of small subjects but can be also used in other genres of photography, not necessarily requiring focusing at close distances.

Features highlight

I/C mount
Shift -12..0..+12 mm
Tilt -8..0..+8°
T/S rotation
Preset
MF

Specification

Production details
Announced:September 2010
Production status: Discontinued
Production type:Mass production
Original name:SCHNEIDER-KREUZNACH PC-TS MAKRO-SYMMAR 4/90 HM
System:-
Optical design
Focal length:90mm
Speed:F/4
Maximum format:35mm full frame
Mount and Flange focal distance:Interchangeable mount
Diagonal angle of view:27° (35mm full frame)
Lens construction:6 elements - 4 groups
Diaphragm mechanism
Diaphragm type:Preset
Number of blades:<No information>
Focusing
Closest focusing distance:0.57m
Maximum magnification ratio:1:4 at the closest focusing distance
Focusing method:<No information>
Focusing modes:Manual focus only
Manual focus control:Focusing ring
Tilt and Shift mechanism
Shift range:-12..0..+12mm
Tilt range:-8..0..+8°
Lens rotation:-
Tilt/Shift rotation:Yes
Physical characteristics
Weight:1110g (Canon EF)
Maximum diameter x Length:⌀108×138.8mm (Canon EF)
Weather sealing:-
Fluorine coating:-
Accessories
Filters:Screw-type 95mm
Lens hood:Not required
Teleconverters:<No information>

*) Source of data: Manufacturer's technical data.

Manufacturer description #1

Perspective control: SCHNEIDER KREUZNACH presents new tilt-shift lenses at photokina

Schneider-Kreuznach has launched three new tilt-shift lenses for digital single-lens reflex cameras with full-frame image sensor: Super-Angulon 2.8/50 mm HM, Makro-Symmar 4.0/90 mm HM and APO-Digitar 5.6/120 mm HM Aspheric.

BAD KREUZNACH, 17 September 2010: The new Schneider-Kreuznach lenses feature shift and tilt movements for perspective control. Thanks to their extremely precise and stable mechanics, they enable the photographer to consciously control and shift the focal plane, creating new opportunities for image composition. The combination of these robust mechanics and Schneider-Kreuznach’s characteristic high-resolution optics makes the three new lenses a universal tool for professional photographers and enthusiastic hobby photographers alike.

Due to the large image circle of the lenses, they can be shifted by 12 mm and tilted by 8 degrees simultaneously. Both the tilt and shift mechanisms can be rotated by 360 degrees so that adjustments can be made in any direction and independently of each other. These individual settings mean that the photographer has a wide scope for creative image composition. The Super-Angulon and Makro-Symmar lenses were developed for DSLR cameras and the APO-Digitar lens for Mamiya/Phase One medium-format systems.

Manufacturer description #2

This lens with a focal length of 90 mm is the ideal solution for product shots with full frame 35 mm format. The slightly longer focal length creates a longer taking distance for arranging the subject and provides extra space for the lighting. The narrower angle of view means that the backgrounds do not have to be so wide. The sharpness is excellent throughout the focus range to enable shots of very small objects (smallest format-filling object field 142 mm x 95 mm) with the long helical mount; in addition, the Scheimpflug tilt ensures a much better DOF and the parallel shift provides more attractive product shots without converging lines or with greatly reduced converging lines.

From the editor

Four interchangeable mounts were available for this lens: Canon EF, Nikon F, Pentax K and Sony A.

Your comment

Copy this code

and paste it here *

Copyright © 2012-2022 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

35mm full frame

43.27 24 36
  • Dimensions: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm

Travellers' choice

Note

Among autofocus lenses designed for 35mm full-frame mirrorless cameras only. Speed of standard and telephoto lenses is taken into account.

Professional lens (Top class)

One of the best shift lenses

According to lens-db.com; among lenses designed for the same maximum format and mount.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

MF

Sorry, no additional information is available.

Shift lenses

Shift lenses are high-quality lenses, usually wide-angle, that provide a parallel shift facility like the sliding lens panel of professional large-format cameras for correcting converging vertical lines and manipulating the perspective especially for use in architectural and product photography.

Whereas normal lenses designed for 35mm full-frame cameras have an image circle diameter of 43.27mm so that all four corners of the image are inside the image circle, shift lenses provide much larger image circle (60mm or even more). Decentration of the lens is possible within this area.

Vertical shift is the most popular: upward when photographing high buildings, and downward for product shots, so that the camera does not have to be tilted. When the camera is tilted either upward or downward, perpendicular lines are not imaged as perpendicular, but rather converge upward or downward, which is very pronounced in wide-angle shots and can be very irritating.

Lens rotation

By using rotation, the direction of the entire lens can be switched.

Tilt/Shift rotation

By using Tilt/Shift rotation, the relationship of the tilt and shift operation directions can be switched from right angle to parallel.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.

Format

Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),

where:

CF – crop-factor of a sensor,
FL – focal length of a lens.

Mount

A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance can also be different.

The flange focal distance (FFD) is the distance from the mechanical rear end surface of the lens mount to the focal plane.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.

Speed

The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Electromagnetic diaphragm control system

Provides highly accurate diaphragm control and stable auto exposure performance during continuous shooting.

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.

Weight

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.

Filters

Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.

Teleconverters

Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.

Lens caps

Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.