Copyright © 2012-2023 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.
Sorry, no additional information is available.
A filter mounting system developed in the USA and used from the 1930s to the 1970s. The filters were round pieces of glass or gelatin mounted as a rule in metal rims with no threads. The filter is inserted into the screw-in or slip-on adapter ring mounted on a lens and then held in place with threaded retaining ring. A lens hood sometimes acted as an adapter or retaining ring.
Filter type | Filter size (inch — mm) |
Retaining ring size (inch — mm) |
Lens diameter, mm | ||
---|---|---|---|---|---|
Series IV / 4 | 13/16 | 20.3 | 15/16 | 23.8 | 16-18 |
Series V / 5 | 1 3/16 | 30.2 | 1 5/16 | 33.3 | 19-30 |
Series VI / 6 | 1 5/8 | 41.3 | 1 3/4 | 44.5 | 31-42 |
Series VII / 7 | 2 | 50.8 | 2 1/8 | 54.0 | 43-51 |
Series VIII / 8 | 2 1/2 | 63.5 | 2 5/8 | 66.7 | 52-67 |
Series IX / 9 | 3 1/4 | 82.6 | 3 7/16 | 87.3 | 67-85 |
Series X / 10 | 4 1/2 | 114 | 4 5/8 | 117 | 86-114 |
Series XI / 11 | 5 7/16 | 138 | 5 9/16 | 141 | 115-138 |
For PA-CURTAGON 35mm as replacement. Also for MACRO-ELMARIT-R 60mm.
Replacement lens cap, black finish, for Leica E60 lenses.
Replacement rear cover for Leica R-mount lenses except 21mm.
Replacement lens cap for the PA-CURTAGON 35mm f/4, ELMARIT-R 24mm f/2.8, MACRO-ELMARIT-R 60mm f/2.8 [I].
By using rotation, the direction of the entire lens can be switched.
By using Tilt/Shift rotation, the relationship of the tilt and shift operation directions can be switched from right angle to parallel.
You are already on the page dedicated to this lens.
Cannot compare the lens to itself.
A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.
The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.
Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.
Format refers to the shape and size of film or image sensor.
35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.
APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.
Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).
Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.
As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.
A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).
This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),
where:
CF – crop-factor of a sensor,
FL – focal length of a lens.
A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.
A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.
Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance can also be different.
The flange focal distance (FFD) is the distance from the mechanical rear end surface of the lens mount to the focal plane.
Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.
Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.
Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.
The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.
The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.
In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.
The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.
The distance from the front edge of the lens to the subject at the maximum magnification.
Determines how large the subject will appear in the final image. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".
The diaphragm must be stopped down manually by rotating the detent aperture ring.
The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.
The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.
The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.
The aperture setting is fixed at F/4 on this lens, and cannot be adjusted.
As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.
Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.
At maximum aperture, the opening will be circular regardless of the number of blades.
Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).
Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).
For lenses with collapsible design, the length is indicated for the working (retracted) state.
A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.
Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.
Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.
Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.
A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.
The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.
Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.
Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.
Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.
Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.
Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.
I’ve been using this lens for three years and am really very pleased with it. I have a pair of Leicaflex SL bodies with dud meters so the cams issue does not affect me at all. I meter with handheld meters. I do not find the stopped-down aperture problematical at all. Most of my shots in the U.K. are around f5.8-8 so the viewfinder is rarely dark. The finder in a Leicaflex SL is very bright anyway, certainly compared with some Japanese cameras. The results from the P.A Curtagon are excellent and that includes colour. Mostly I use Tri-X though.
I was fortunate to obtain the correct lens hood when buying this lens as it holds the series VIII filters in place. I’ve been collecting them for mono work -orange/red/green/blue and polariser. There’s a small rubber wheel in the hood to adjust the polariser. These guys really thought everything out. I don’t use the shift aspect of the lens as I’m not into architecture. I use the P.A for street and general reportage. One gripe though, I’ve added a 90mm f2.8 R lens to my outfit, but that’s a series VII filter job. Pity we could not have standardised somewhat. So I’ve been considering the purchase of duplicates for the 90. The build quality of this gear is amazing. The bodies are not too expensive if you buy one with non- working meter. Of course the correct battery is not available and has not been for at least 20 years. It requires the PX625 mercury oxide cell @ 1.35v. The alkaline PX625 @ 1.5v is not suitable as the initial voltage is too high and then it starts dropping. An unstable voltage is useless for a camera meter. My pair were £65 each, the 35/4 was £225 and the 90/2.8 R was £149. Meters and bag I already had. We will not see quality like this again. Every time I venture forth, I find some guy looking at my camera. Often he speaks and I spend 10 minutes explains the history of the Leicaflex- the diesel Leica.