Ricoh XR Rikenon 28mm F/3.5 Aspherical

Wide-angle prime lens • Film era • Discontinued

ASPHERICAL The lens incorporates aspherical elements.

Model history / モデル履歴

Ricoh XR Rikenon 28mm F/3.5 AsphericalPancake lensA6 - 60.35mE52 1996 
Ricoh XR Rikenon 28mm F/3.5A? - ?0.3mE52

Ricoh XR-1

35mm MF film SLR camera

Announced: Sep 1977
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Mechanical
Speeds: 1 - 1/1000 + B
Exposure metering: Through-the-lens (TTL)
Dimensions: 139.9x91.3x48mm
Weight: 550g

Ricoh XR-2

35mm MF film SLR camera

Announced: Sep 1977
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 8 - 1/1000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Aperture-priority Auto
Manual
Dimensions: 139.9x91.3x48mm
Weight: 560g

Ricoh XR500

35mm MF film SLR camera

Also known as: Ricoh KR-5
Announced: Sep 1978
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Mechanical
Speeds: 1/8 - 1/500 + B
Exposure metering: Through-the-lens (TTL)
Dimensions: 139.9x91.3x48mm
Weight: 540g

Ricoh XR-1S

35mm MF film SLR camera

Announced: Jul 1979
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Mechanical
Speeds: 1 - 1/1000 + B
Exposure metering: Through-the-lens (TTL)
Dimensions: 139.9x91.3x48mm
Weight: 550g

Ricoh XR-2S

35mm MF film SLR camera

Announced: Jul 1979
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 8 - 1/1000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Aperture-priority Auto
Manual
Dimensions: 139.9x91.3x48mm
Weight: 560g

Ricoh KR-10SE

35mm MF film SLR camera

Announced: 1980
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 8 - 1/1000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Aperture-priority Auto
Manual
Dimensions: 140x91x50mm
Weight: 545g

Ricoh XR5

35mm MF film SLR camera

Also known as: Ricoh KR-5 Super
Ricoh CR-5
Announced: 1980
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Mechanical
Speeds: 1/8 - 1/1000 + B
Exposure metering: Through-the-lens (TTL)
Dimensions: 139.9x91.3x48mm
Weight: 540g

Ricoh KR-10

35mm MF film SLR camera

Also known as: Ricoh XR-1000S
Ricoh CR-10
Announced: Feb 1980
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 8 - 1/1000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Aperture-priority Auto
Manual
Dimensions: 140x91x50mm
Weight: 545g

Ricoh XR6

35mm MF film SLR camera

Announced: Feb 1981
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 1 - 1/1000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Aperture-priority Auto
Manual
Dimensions: 136x86x51mm
Weight: 460g

Ricoh XR-S

35mm MF film SLR camera

Announced: Jul 1981
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 16 - 1/1000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Aperture-priority Auto
Manual
Dimensions: 136x89x51mm
Weight: 475g

Ricoh XR-2000

35mm MF film SLR camera

Also known as: Ricoh KR-10 Super
Announced: 1982
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 16 - 1/1000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Aperture-priority Auto
Manual
Dimensions: 136x86x51mm
Weight: 460g

Ricoh XR7

35mm MF film SLR camera

Announced: Feb 1982
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 16 - 1/1000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Aperture-priority Auto
Manual
Dimensions: 136x86x51mm
Weight: 470g

Ricoh XR500 auto

35mm MF film SLR camera

Announced: Sep 1982
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 1 - 1/1000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Aperture-priority Auto
Manual
Dimensions: 136x86x51mm
Weight: 455g

Ricoh XR-F

35mm MF film SLR camera

Announced: 1983
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 1 - 1/1000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Aperture-priority Auto
Manual
Dimensions: 136x88x51mm
Weight: 490g

Ricoh XR-8

35mm MF film SLR camera

Also known as: Ricoh KR-5 Super II
Announced: Jan 1993
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Mechanical
Speeds: 1 - 1/2000 + B
Exposure metering: Through-the-lens (TTL)
Dimensions: 133x85x50mm
Weight: 410g

Ricoh XR-8 Super

35mm MF film SLR camera

Also known as: Ricoh KR-5 III
Announced: Jan 1994
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Mechanical
Speeds: 1 - 1/2000 + B
Exposure metering: Through-the-lens (TTL)
Dimensions: 139.5x88.5x59mm
Weight: 435g

Ricoh XR Solar

35mm MF film SLR camera

Announced: Apr 1994
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Mechanical
Speeds: 1 - 1/2000 + B
Exposure metering: Through-the-lens (TTL)
Dimensions: 136x91x62mm
Weight: 430g

Ricoh KR-5 SV

35mm MF film SLR camera

Announced: 2000
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Mechanical
Speeds: 1 - 1/2000 + B
Exposure metering: Through-the-lens (TTL)
Dimensions: 139.3x88.4x56.2mm
Weight: 420g

Ricoh XR-P

35mm MF film SLR camera

Announced: Jul 1984
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 16 - 1/2000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Programmed Auto
Aperture-priority Auto
Shutter-priority Auto
Manual
Dimensions: 136x88x51mm
Weight: 505g

Ricoh XR-20SP

35mm MF film SLR camera

Also known as: Ricoh KR-30SP
Announced: Oct 1985
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 16 - 1/2000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Programmed Auto
Aperture-priority Auto
Shutter-priority Auto
Manual
Dimensions: 137x89x51mm
Weight: 490g

Ricoh XR-10

35mm MF film SLR camera

Also known as: Ricoh KR-10X
Announced: 1986
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 16 - 1/1000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Aperture-priority Auto
Manual
Dimensions: 136x86x51mm
Weight: 470g

Ricoh XR-X

35mm MF film SLR camera

Also known as: Ricoh XR-M
Announced: Nov 1987
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 30 - 1/2000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Programmed Auto
Aperture-priority Auto
Shutter-priority Auto
Manual
Dimensions: 142x91x51mm
Weight: 495g

Ricoh XR-7M

35mm MF film SLR camera

Announced: 1989
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 16 - 1/1000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Aperture-priority Auto
Manual

Ricoh XR-10M

35mm MF film SLR camera

Also known as: Ricoh XR-X2000
Ricoh KR-10M
Announced: Jun 1990
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 32 - 1/2000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Aperture-priority Auto
Manual
Dimensions: 151x91x51mm
Weight: 510g

Ricoh XR-7M II

35mm MF film SLR camera

Announced: Oct 1993
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 8 - 1/2000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Aperture-priority Auto
Manual
Dimensions: 138.5x88x58mm
Weight: 370g

Ricoh XR-X3000

35mm MF film SLR camera

Announced: 1994
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 32 - 1/2000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Aperture-priority Auto
Manual
Dimensions: 151x94.5x62mm
Weight: 480g

Ricoh XR-10P

35mm MF film SLR camera

Also known as: Ricoh XR-X 3P
Announced: Mar 1995
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 32 - 1/2000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Programmed Auto
Aperture-priority Auto
Shutter-priority Auto
Manual
Dimensions: 151x97.5x62mm
Weight: 500g

Ricoh XR-10PF

35mm MF film SLR camera

Also known as: Ricoh XR-X 3PF
Announced: Mar 1995
Mount: Pentax K
Format: 36 × 24mm
Shutter type: Focal-plane
Shutter model: Electronically controlled
Speeds: 32 - 1/3000 + B
Exposure metering: Through-the-lens (TTL)
Exposure modes: Programmed Auto
Aperture-priority Auto
Shutter-priority Auto
Manual
Dimensions: 151x107.5x62mm
Weight: 550g

Designed for / のために設計された

Specification / 仕様

Some basic information is missing as it was not provided by the manufacturer.
製造元から提供されていないため、一部の基本情報が欠落しています。

Production status and name / 生産状況と名称
Announced / 発表: 1996
Production status / 生産状況: Discontinued
Original name / 元の名前: RICOH ASPHERIC LENS XR RIKENON 1:3.5 28mm
Optical design / 光学設計
Maximum format / 最大フォーマット: 35mm full frame
Mount / マウント: Pentax K
Diagonal angle of view / 対角画角: 75.4° (35mm full frame)
53.6° (Pentax K APS-C)
Lens construction / レンズ構造: 6 elements - 6 groups
Diaphragm mechanism / ダイヤフラムメカニズム
Diaphragm type / ダイヤフラムタイプ: Automatic
Number of blades / 絞り羽根の数: 6
Focusing / フォーカシング
Closest focusing distance / 最短撮影距離: 0.35m
Maximum magnification ratio / 最大倍率: <No information>
Focusing method / フォーカシング方法: <No information>
Focusing modes / フォーカシングモード: Manual focus only
Manual focus control / マニュアルフォーカス制御: Focusing ring
Physical characteristics / 体格的特徴
Weight / 重量: 55g
Maximum diameter x Length / 最大直径x長さ: ⌀58.5×19.5mm
Accessories / 付属品
Filters / フィルタ: Screw-type 52mm
Lens hood / レンズフード: <No information>

Typical application / 典型的なアプリケーション

landscapes, interiors, buildings, cityscapes, travel

Your comment

Copy this code

and paste it here *

Copyright © 2012-2021 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

35mm full frame

43.27 24 36
  • Dimensions: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm

Pancake lens

Pancake lenses get their name due to the thin and flat size. The other distinctive features are fixed focal length and light weight.

First pancake lenses appeared in the 1950s and were standard prime lenses based on the famous Tessar design – a brilliantly simple design which was developed by Paul Rudolph in 1902, patented by Zeiss company and provided a good optical performance.

With the improvement of optical technologies in the 1970s the optical design of pancake lenses became more complicated and the latest generation has overcome the limitations of traditional designs. As a result, pancake lenses are now also available in wide-angle and even short telephoto variations.

Due to the increasing demand for cameras with a compact form factor, pancake lenses are experiencing a second wave of popularity while having reasonable prices, which makes them accessible to a wide range of photographers. Such lenses are especially useful for those who enjoy travel photography.

Travellers' choice

Note

Among autofocus lenses designed for 35mm full-frame mirrorless cameras only. Speed of standard and telephoto lenses is taken into account.

One of the best wide-angle prime lenses

According to lens-db.com; among lenses designed for the same maximum format and mount.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Quality control issues

The manufacturer of this lens does not provide adequate quality control. If you do decide to purchase this lens, do not order it online, but choose the best copy available in the store. In any case, there may also be problems with the build quality, and warranty repairs can take months.

Model produced in a small batch. It is collectible and can only be found on the secondary market.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Classic focal length

28mm is the classic focal length of wide-angle lenses for 35mm full-frame cameras. The field of view is not as wide as with 24-25mm lenses, but noticeably wider than with 35mm lenses. In general, this is a fairly compromise focal length: lenses with focal lengths of 24-25mm are better suited for shooting architecture, and ultra-high speed is quite rare in this class of lenses. On the other hand, due to the moderate focal length, aberrations are corrected better than in lenses with focal lengths of 24-25mm.

MF

Sorry, no additional information is available.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.

Format

Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),

where:

CF – crop-factor of a sensor,
FL – focal length of a lens.

Mount

A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance from the lens mount to the film or sensor can also be different.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Electromagnetic diaphragm control system

Provides highly accurate diaphragm control and stable auto exposure performance during continuous shooting.

Convex protruding front element

The convex front element protrudes from the lens barrel, making it impossible to use filters.

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.

Weight

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.

Filters

Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.