Nikon NIKKOR-Q[·C] Auto 135mm F/2.8

Medium telephoto prime lens • Film era • Discontinued


Model history (5)

Nikon NIKKOR-Q[·C] Auto 135mm F/2.8A4 - 41.5m⌀52 1965 
Nikon NIKKOR 135mm F/2.8A4 - 41.5m⌀52 1975 
Nikon NIKKOR 135mm F/2.8A5 - 41.3m⌀52 1976 
Nikon AI NIKKOR 135mm F/2.8A5 - 41.3m⌀52 1977 
Nikon AI-S NIKKOR 135mm F/2.8A5 - 41.3m⌀52 1981 

Features highlight

Built-in hood


Production details
Announced:December 1965
Production status: Discontinued
Original name:Nippon Kogaku NIKKOR-Q Auto 1:2.8 f=135mm
Nikon NIKKOR-Q Auto 1:2.8 f=135mm
Nikon NIKKOR-Q·C Auto 1:2.8 f=135mm
System:Nikon F (1959)
Optical design
Focal length:135mm
Maximum format:35mm full frame
Mount and Flange focal distance:Nikon F [46.5mm]
Diagonal angle of view:18.2°
Lens construction:4 elements in 4 groups
Diaphragm mechanism
Diaphragm type:Automatic
Aperture control:Aperture ring (Manual settings only)
Number of blades:7 (seven)
Closest focusing distance:1.5m
Maximum magnification:<No data>
Focusing modes:Manual focus only
Manual focus control:Focusing ring
Physical characteristics
Maximum diameter x Length:⌀72.5×96mm
Weather sealing:-
Fluorine coating:-
Filters:Screw-type 52mm
Lens hood:Built-in telescopic round
Teleconverters:<No data>
Sources of data
1. Manufacturer's technical data.
2. Nikon/Nikkormat Sales Manual (March 1972).
3. The Nikon system of photography booklet (September 1965).
4. Nikon F2 Photography Guide.


  • This non-AI lens was designed for Nikon F, F2, Nikkormat FS, FT, FT2, FTN, EL, ELW 35mm film SLR cameras.
  • Non-AI lenses cannot be used on Nikon digital SLR cameras (except for the Df) or late (AI) film SLR cameras. However, non-AI lenses can be fitted to Nikon FM, FE, EL2, F3, F4 and Nikkormat FT3 cameras which used the AI metering system but allowed the metering coupling lever to be disengaged. The F5 could have this mechanism fitted as an optional extra. Non-AI lenses can be also fitted to the Nikon F2A and F2AS cameras because the AI mechanism was fitted to the removable metering prism.

Manufacturer description #1

With a large aperture of f /2.8, this 135mm telephoto lens is well corrected for all aberrations and produces excellent resolution and high contrast even at full lens opening.

Even in close-range shooting, the lens maintains the flatness of the entire image plane to produce virtually distortion-free pictures.

Besides general telephoto photography, this lens is suited for portraiture, indoor sports, theatrical and landscape photography.

It also has a built-in telescopic lens hood.

Manufacturer description #2

A high-speed telephoto lens with a brightness of f/2.8. Spherical and coma aberrations have been thoroughly corrected. Other aberrations, particularly the curvature of image, have been minimized. Even when photographing close distance objects, the same image plane flatness is maintained, throughout the corners of the picture as well as at the picture center.

In comparison to similar type of lenses, a very good resolution and contrast are produced at maximum aperture. Ideal for portraiture, indoor sports, stage and landscape photography.

From the editor

The first versions of the 135mm f2.8 model can only be described as providing a moderate performance. Only in 1976 it received a significant overhaul including an extra lens element, an extended aperture range to f32, reduced minimum focus distance, and a much more compact design.

·C (multi-coated) version of this lens was introduced in 1973. The specification is exactly the same as for the single-coated version.

Typical application


Fast full-frame medium telephoto prime lens

Genres or subjects of photography (4):

Portraits • Distant subjects • Distant landscapes with perspective compression effect • Travel photography

Adaptation to digital SLR cameras:

Canon EOS SLRsSigma SD SLRsSony SLRs/SLTsPentax SLRsMore information

Not adaptable

In order to adapt the lens, the flange focal distance (FFD) of the lens mount must be equal to or greater than the FFD of the camera mount. This lens has the Nikon F mount with a FFD of 46.5mm. This is even shorter than the FFD of Canon EOS digital SLR cameras, which have the shortest FFD of 44mm of any modern digital SLR cameras. Therefore, this lens cannot be adapted to any digital SLR camera.

Recommended slowest shutter speed when shooting static subjects handheld:

1/160th of a second

Alternatives in the Nikon F system

Sorted by focal length and speed, in ascending order

Lenses with similar focal length and speed

Sorted by manufacturer name

Notify of

Copy this code

and paste it here *

Newest Most Voted
Inline Feedbacks
View all comments
5 months ago

Hi, i want to use this lense in a Nikon d7000, but its like do not enter good.

Evgenii Artemov
Evgenii Artemov
5 months ago

This lens belongs to the non-AI series, it cannot be mounted on Nikon digital SLR cameras, including the Nikon D7000.

Table of contents
Pros and cons
Nikon non-AI Nikkor series lenses (106)

Nikon non-AI Nikkor series lenses

Offer optical performance similar to AI Nikkors but do not incorporate the automatic maximum-aperture indexing (AI) and Aperture Direct Reading (ADR) features. They are used with stopdown exposure measurement on Nikon cameras. However, most Auto-Nikkors equipped with meter-coupling shoe can be converted to AI operation and full-aperture metering.

Diaphragms - automatic, preset, or manual - of non-AI and AI lens types function in an identical manner with all Nikon-system cameras.

The A-type

The very first lenses for the Nikon F and the Nikkormat FT/FTN belong to the A-type and can be distinguished by the fact that no screw heads are visible on the lens bayonet ring, and the distance scale was only marked in meters. Later A-type lenses have screw heads protruding through the lens bayonet and a distance scale in both meters and feet. All A-type lenses have a chrome finished filter ring and the designation was engraved with the name "Nikkor", the maximum aperture, and the focal length. Early A-types have the focal length shown in centimeters, whilst on later lenses it is given in millimeters. Lenses having "Auto" are equipped with automatic diaphragms which are coupled directly to the shutter release and mirror action mechanisms.

Several of these lenses were modified by the addition of multi-coating to their glass elements to become C-types.

The code letter after the "Nikkor" engraving is indicative of the number of elements in each lens. The letters are from Latin or Greek: U for 1 element (Uns),B for 2 elements (Bini), T for 3 elements (Tres), Q for 4 elements (Quatuor), P for 5 elements (Pente), H for 6 elements (Hex), S for 7 elements (Septem), O for 8 elements (Octo), N for 9 elements (Novem), D for 10 elements (Decem).

Thus, the Nikkor-P Auto 105mm lens is constructed with five lens elements, and the Nikkor-UD Auto consists of eleven elements.

The C-type

The C-type Nikkors resemble the A-versions, but some or all of their glass elements are multi-coated. Slight cosmetic changes also differentiate the C-type lenses, which have a black finish to their filter ring with the additional "C" after the code letter for the number of elements. The C-types were introduced from 1967 and remained in production into the early 1970s.

The K-type

Most K-type lenses were fitted with a rubber covered focusing ring, which makes them instantly recognizable from their predecessors. Their depth-of-field rings were usually finished in black, but otherwise their internal construction was the same as the C-types. During 1977, after a relatively short time in production, the K-types were replaced by the AI Nikkors.

Copyright © 2012-2023 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

35mm full frame

43.27 24 36
  • Dimensions: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm
  • Area: 864mm2


Sorry, no additional information is available.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.


Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),


CF – crop-factor of a sensor,
FL – focal length of a lens.


A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance can also be different.

The flange focal distance (FFD) is the distance from the mechanical rear end surface of the lens mount to the focal plane.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.


The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Fixed diaphragm

The aperture setting is fixed at F/2.8 on this lens, and cannot be adjusted.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.


Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.


Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.


Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.

Lens caps

Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.