Nikon AF-S DX NIKKOR 18-200mm F/3.5-5.6G IF-ED VR

Superzoom lens • Digital era • Discontinued

Sample photos

75mm F/5.6
18mm F/8
32mm F/4.2
18mm F/8
200mm F/5.6
95mm F/5.3
22mm F/5.6
200mm F/5.6
70mm F/5
75mm F/6.3
120mm F/6.3
170mm F/5.6
200mm F/5.6
48mm F/9
95mm F/5.3
135mm F/5.6
200mm F/7.1
82mm F/5.3
80mm F/5.3
24mm F/3.8
28mm F/4
82mm F/5.3
18mm F/9
46mm F/13
22mm F/3.8
200mm F/5.6
70mm F/8
200mm F/9
18mm F/10
22mm F/9
60mm F/8
120mm F/5.6
200mm F/6.3

Abbreviations

AF-S The lens is equipped with Silent Wave Motor.
DX The lens is designed for Nikon APS-C digital cameras only.
G The lens does not have an aperture control ring and is intended for use on Nikon digital SLR cameras that allow the lens aperture to be adjusted via the camera's command dial. Relays subject-to-camera distance information to the camera, like a D-type lens.
IF The lens incorporates internal focusing.
ED The lens incorporates low dispersion elements.
VR The lens is equipped with Vibration Reduction system.

Production details

Announced:November 2005
Production type:Mass production
Production status: Discontinued
Original name:Nikon AF-S NIKKOR 18-200mm 1:3.5-5.6 G ED DX VR
System:Nikon F APS-C (1999)

Model history (2)

Nikon AF-S DX NIKKOR 18-200mm F/3.5-5.6G IF-ED VRAPS-CA16 - 120.5m⌀72 2005 
Nikon AF-S DX NIKKOR 18-200mm F/3.5-5.6G ED VR IIAPS-CA16 - 120.5m⌀72 2009 

Features highlight

APS-C
3
ASPH
2
ED
IF
SWM
MFO
VR
4 stops
VR
NORMAL
VR
ACTIVE
⌀72
filters

Specification

Optical design
Focal length range:18mm - 200mm [11.1X zoom ratio]
Speed range:F/3.5 @ 18mm - F/5.6 @ 200mm
Maximum format:APS-C
Mount and Flange focal distance:Nikon F [46.5mm]
Diagonal angle of view:76.3° @ 18mm - 8.1° @ 200mm (Nikon D APS-C)
Lens construction:16 elements - 12 groups
3 ASPH, 2 ED
Internal focusing (IF)
Diaphragm mechanism
Diaphragm type:Automatic
Aperture control:None; the aperture is controlled from the camera
Number of blades:7 (seven)
Zooming
Zoom mechanism:Manual
Zoom control:Zoom ring
Zoom type:Rotary
Zooming method:Extends while zooming
Focusing
Closest focusing distance:0.5m
Maximum magnification ratio:1:4.55 @ 200mm at the closest focusing distance
Focusing modes:Autofocus, manual focus
Manual focus control:Focusing ring
Autofocus motor:Silent Wave Motor
Focus mode selector:M/A - M
Manual focus override in autofocus mode:Yes
Vibration Reduction (VR)
Built-in VR:Yes
VR features:VR NORMAL
VR ACTIVE
VR efficiency:up to 4 stops @ 200mm
Physical characteristics
Weight:560g
Maximum diameter x Length:⌀77×96.5mm
Weather sealing:-
Fluorine coating:-
Accessories
Filters:Screw-type 72mm
Lens hood:Bayonet-type HB-35 (petal-shaped)
Teleconverters:Not available

*) Source of data: Manufacturer's technical data.

35mm equivalent focal length range and speed

In terms of FoV & DoF
Camera series [Crop factor] Focal length SpeedMax MR Dia. angle of view
Nikon D APS-C [1.53x] 27.5mm - 306mm F/5.4 @ 18mm - F/8.6 @ 200mm1:2.97 76.3° @ 18mm - 8.1° @ 200mm

Manufacturer description

November 1, 2005

Nikon Adds New 18-200MM Lens to its Nikkor Line of Lenses

MELVILLE, NY – Nikon Inc. today introduced the new 18-200mm f/3.5-5.6G IF-ED AF-S DX VR Zoom-Nikkor lens, a compact, lightweight 11.1x zoom lens that is ideal for high performance everyday photography and incorporates advanced features such as Nikon™ Extra Low Dispersion (ED) glass, Silent Wave Motor technology (SWM) and Enhanced Vibration Reduction (VR II) in a DX-Nikkor design engineered exclusively for use with Nikon DX format digital SLR cameras. With a remarkable 18-200mm focal length range (picture angle equivalent to a 27-300mm lens in 35mm format) the lens conveniently covers everything from wide landscapes to tight portraits and action photography. Advanced Nikon engineering has lent the lens a compact lightweight design that offers excellent handling characteristics and superb optical quality.

Nikon™ range of DX Nikkor lenses, designed specifically for Nikon digital SLR cameras, has grown substantially since the introduction of the category, and the new 18-200mm f/3.5-5.6G IF-ED AF-S DX VR Zoom-Nikkor lens is an excellent addition offering Nikon digital SLR photographers an advanced all-purpose lens with superb optical performance and Enhanced Vibration Reduction capabilities, said Edward Fasano, general manager for Marketing, SLR Systems Products, at Nikon Inc. Nikkor lenses are famous for their breathtaking sharpness, optimal contrast and consistent color rendition across its range of lenses with varying focal lengths. Now with the 18-200mm f/3.5-5.6G IF-ED AF-S DX VR Zoom-Nikkor, Nikon photographers will be able to take advantage of remarkable versatility in one lens with assurance of the outstanding Nikkor image performance that has made Nikkor lenses renowned worldwide.

Beyond the lens' incredible optical versatility is the benefit of Enhanced VR II Vibration Reduction an innovation that makes it possible to take substantially sharper handheld pictures at slower shutter speeds than would otherwise be possible. This provides the distinct advantage of being able to shoot more effectively in a much broader variety of challenging conditions. With the new Nikon VR II advantage, users can take pictures at shutter speeds as many as 4 stops slower* than they ordinarily could shoot without the image degrading blur associated with camera shake at slow shutter speeds. Nikon™ VR technology further enhances picture taking potential with a choice of two modes to match most shooting conditions. VR Normal Mode primarily compensates for camera shake, and includes automatic panning detection, as well as automatic tripod detection. VR Active Mode effectively compensates for vibration in situations where it is more pronounced and more frequent, such as when shooting from a moving vehicle.

To further ensure outstanding optical performance, the 18-200mm f/3.5-5.6G IF-ED AF-S DX VR Zoom-Nikkor features two Extra-Low Dispersion (ED) glass elements and three complex aspherical lens elements that provide for higher resolution, high-contrast images while minimizing chromatic aberration, astigmatism and other forms of distortion. The lens also features Nikon™ compact Silent Wave Motor technology (SWM) which combines fast and precise autofocusing with super-quiet operation, as well as Internal Focusing (IF) construction that allows the lens to focus without changing its external size, improving balance and handling chrematistics.

All of Nikon™ DX Nikkor lenses are engineered exclusively for use with Nikon DX format digital SLR cameras, making the lens smaller and lighter while providing exceptional center-to-edge-to-corner image quality and overall optical performance. With the addition of the 18-200mm f/3.5-5.6G IF-ED AF-S DX VR Zoom-Nikkor lens, Nikon photographers can choose from over 50 Nikkor lenses, ranging from the amazing 10.5mm f/2.8G ED AF DX Fisheye to the astounding 600mm f/4D ED-IF AF-S II super Telephoto.

18-200mm f/3.5-5.6G IF-ED AF-S DX VR Zoom-Nikkor Major Features

  • Offers the broad 18-200mm focal range (11.1x zoom) for use in a variety of situations (equivalent to a 27-300 mm lens in 35mm format)
  • VR II Vibration Reduction system offers the practical equivalent of using a shutter speed 4 stops faster
  • Two ED glass and three complex aspherical lens elements minimize chromatic aberration, astigmatism and other forms of distortion, while ensuring high resolution and contrast
  • Incorporates a compact SWM (Silent Wave Motor) for quiet focusing
  • Delivers high-level optical performance that is specially designed for use with the Nikon digital SLRs
  • Employs a seven-blade rounded diaphragm opening that achieves a natural blur for out-of-focus elements
  • Enables focusing from as close as 50cm (20 in.) from the subject through its entire focal range
  • M/A mode for rapid switching between autofocus and manual focus operation
  • Internal Focusing (IF) design simplifies the use of circular polarizing filters
  • Nikon Super Integrated Coating (SIC) offers superb color reproduction while minimizing ghosting and flare
  • Flower-shaped Lens Hood HB-35 (included) greatly reduces stray light, enhancing image quality

Typical application

Class:

Slow APS-C-format superzoom lens

Missing features (3):

16mm at the wide end • Weather sealing • Fluorine coating

Genres or subjects of photography (7):

Landscapes • Cityscapes • Buildings • Interiors • Portraits • Wild nature • Travel photography

Recommended slowest shutter speed when shooting static subjects handheld:

1/13th of a second @ 200mm (VR ON) • 1/200th of a second @ 200mm (VR OFF) • 1/20th of a second @ 18mm (VR OFF)

Alternatives in the Nikon F APS-C system

///// Sorted by focal length and speed, in ascending order /////

Lenses with similar focal length range and speed

///// Sorted by manufacturer name /////

Subscribe
Notify of
guest

Copy this code

and paste it here *

0 comments
Inline Feedbacks
View all comments
Share
Clickable
Table of contents
Clickable
Pros and cons
Instruction manual
Clickable
Nikon AF-S Nikkor series lenses (87)
Clickable

Copyright © 2012-2022 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

35mm full frame

43.27 24 36
  • Dimensions: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm
  • Area: 864mm2

Silent Wave Motor

Silent Wave Motor is available in variants with or without a gear system. Nikon never specifies which variant is used in a particular lens, however, in budget models, as a rule, gear-type Silent Wave Motor is used, without manual focus override in autofocus mode. This can be assumed by the presence of the A - M switch on the lens barrel, instead of M/A - M.

M/A - M

M/AAutofocus mode that allows switching to manual focus with virtually no time lag - even during autofocus servo operation and regardless of autofocus mode in use.
MManual focus mode.

Aspherical elements

Aspherical elements (ASPH, XA, XGM) are used in wide-angle lenses for correction of distortion and in large-aperture lenses for correction of spherical aberration, astigmatism and coma, thus ensuring excellent sharpness and contrast even at fully open aperture. The effect of the aspherical element is determined by its position within the optical formula: the more the aspherical element moves away from the aperture stop, the more it influences distortion; close to the aperture stop it can be particularly used to correct spherical aberration. Aspherical element can substitute one or several regular spherical elements to achieve similar or better optical results, which allows to develop more compact and lightweight lenses.

Use of aspherical elements has its downsides: it leads to non-uniform rendering of out-of-focus highlights. This effect usually appears as "onion-like" texture of concentric rings or "wooly-like" texture and is caused by very slight defects in the surface of aspherical element. It is difficult to predict such effect, but usually it occurs when the highlights are small enough and far enough out of focus.

Low dispersion elements

Low dispersion elements (ED, LD, SD, UD etc) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. This type of glass exhibits low refractive index, low dispersion, and exceptional partial dispersion characteristics compared to standard optical glass. Two lenses made of low dispersion glass offer almost the same performance as one fluorite lens.

Low dispersion elements

Low dispersion elements (ED, LD, SD, UD etc) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. This type of glass exhibits low refractive index, low dispersion, and exceptional partial dispersion characteristics compared to standard optical glass. Two lenses made of low dispersion glass offer almost the same performance as one fluorite lens.

Canon's Super UD, Nikon's Super ED, Pentax' Super ED, Sigma's FLD ("F" Low Dispersion), Sony' Super ED and Tamron's XLD glasses are the highest level low dispersion glasses available with extremely high light transmission. These optical glasses have a performance equal to fluorite glass.

High-refraction low-dispersion elements

High-refraction low-dispersion elements (HLD) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

High Index, High Dispersion elements

High Index, High Dispersion elements (HID) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

Anomalous partial dispersion elements

Anomalous partial dispersion elements (AD) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

Fluorite elements

Synthetic fluorite elements (FL) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. Compared with optical glass, fluorite lenses have a considerably lower refraction index, low dispersion and extraordinary partial dispersion, and high transmission of infrared and ultraviolet light. They are also significantly lighter than optical glass.

According to Nikon, fluorite easily cracks and is sensitive to temperature changes that can adversely affect focusing by altering the lens' refractive index. To avoid this, Canon, as the manufacturer most widely using fluorite in its telephoto lenses, never uses fluorite in the front and rear lens elements, and the white coating is applied to the lens barrels to reflect light and prevent the lens from overheating.

Short-wavelength refractive elements

High and specialized-dispersion elements (SR) refract light with wavelengths shorter than that of blue to achieve highly precise chromatic aberration compensation. This technology also results in smaller and lighter lenses.

Blue Spectrum Refractive Optics

Organic Blue Spectrum Refractive Optics material (BR Optics) placed between convex and concave elements made from conventional optical glass provides more efficient correction of longitudinal chromatic aberrations in comparison with conventional technology.

Diffraction elements

Diffraction elements (DO, PF) cancel chromatic aberrations at various wavelengths. This technology results in smaller and lighter lenses in comparison with traditional designs with no compromise in image quality.

High refractive index elements

High refractive index elements (HR, HRI, XR etc) minimize field curvature and spherical aberration. High refractive index element can substitute one or several regular elements to achieve similar or better optical results, which allows to develop more compact and lightweight lenses.

Apodization element

Apodization element (APD) is in fact a radial gradient filter. It practically does not change the characteristics of light beam passing through its central part but absorbs the light at the periphery. It sort of softens the edges of the aperture making the transition from foreground to background zone very smooth and results in very attractive, natural looking and silky smooth bokeh.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.

Format

Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),

where:

CF – crop-factor of a sensor,
FL – focal length of a lens.

Mount

A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance can also be different.

The flange focal distance (FFD) is the distance from the mechanical rear end surface of the lens mount to the focal plane.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.

Speed

The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Electronic manual focus override is performed in the following way: half-press the shutter button, wait until the camera has finished the autofocusing and then focus manually without releasing the shutter button using the focusing ring.

Fixed focus

There is no helicoid in this lens and everything is in focus from the closest focusing distance to infinity.

Internal focusing (IF)

Conventional lenses employ an all-group shifting system, in which all lens elements shift during focusing. The IF system, however, shifts only part of the optics during focusing. The advantages of the IF system are:

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Fixed diaphragm

The aperture setting is fixed at F/3.5 on this lens, and cannot be adjusted.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.

Weight

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.

Filters

Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.

Teleconverters

Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.

Lens caps

Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.

Rotary zoom

The change of focal length is achieved by turning the zoom ring and the manual focusing - by turning the separate focusing ring.

Push/pull zooming allows for faster change of focal length, however conventional method based on the rotation of the zoom ring provides more accurate and smooth zooming.

Push/pull zoom

The change of focal length happens when the photographer moves the ring towards the mount or backwards.

Push/pull zooming allows for faster change of focal length, however conventional method based on the rotation of the zoom ring provides more accurate and smooth zooming.

Zoom lock

The lens features a zoom lock to keep the zoom ring fixed. This function is convenient for carrying a camera with the lens on a strap because it prevents the lens from extending.

Zoom clutch

To set the manual zoom mode, pull the zoom ring towards the camera side until the words "POWER ZOOM" disappear.

Efficiency of image stabilizer

The efficiency of image stabilizer is measured in stops and each stop corresponds to a two-times increase of shutter speed. For example, if you are shooting at focal length of 80mm and it is known that the efficiency of image stabilizer is 3 stops, it means that during handheld shooting at such focal length you can use shutter speed of 1/10 second which is exactly 23 times longer than the shutter speed 1/80 second needed to obtain sharp image in sufficient lighting conditions.

Hybrid IS

The image stabilizer has Hybrid IS technology which corrects not only angle but also shift camera shake, which is more pronounced in close-range shooting when a camera moves parallel to the imaging scene. Hybrid IS dramatically enhances the effects of image stabilization during shooting, including macro shooting, which had proven difficult for conventional image stabilization technologies.

XY-Shift

The image stabilizer has XY-Shift technology which corrects not only angle but also shift camera shake, which is more pronounced in close-range shooting when a camera moves parallel to the imaging scene. XY-Shift dramatically enhances the effects of image stabilization during shooting, including macro shooting, which had proven difficult for conventional image stabilization technologies.

Dynamic IS

The image stabilizer has Dynamic IS technology which especially effective when shooting while walking because it compensates strong camera shake. Dynamic IS activates automatically when the camera is set to movie shooting.

Mode 1

Corrects vertical and horizontal camera shake. Mainly effective for shooting still subjects.

Mode 2

Corrects vertical camera shake during following shots in a horizontal direction. Corrects horizontal camera shake during following shots in a vertical direction.

Mode 2

Corrects vertical camera shake during following shots in a horizontal direction.

Mode 2 (Intelligent OS)

The lens incorporates Intelligent OS with algorithm capable of panning in all directions. In Mode 2, the movements of subjects can be captured with panning effects even when the camera is moved horizontally, vertically, or diagonally — regardless of the position of the lens.

Mode 3

Corrects camera shake only during exposure. During panning shots, corrects camera shake during exposure only in one direction the same as Mode 2. Effective for following fast and irregulary moving subjects.

Panning Detection

The image stabilizer automatically detects panning and then corrects camera shake only in one direction.

Tripod Detection

It is often thought that image blur caused by camera shake can be prevented by using a tripod. Actually, however, even using a tripod may result in image blur because of tripod vibration caused by mirror or shutter movement at the time of exposure. The image stabilizer automatically differentiates the frequency of the vibration from that of camera shake, and changes algorithm to correct image blur caused by slight tripod vibration.

VR NORMAL

Corrects vertical and horizontal camera shake. Automatically detects panning and then corrects camera shake only in one direction.

VR ACTIVE

Corrects vertical and horizontal camera shake when shooting from a moving vehicle, or some other unstable position. Panning is not detected.

VR SPORT

Allows a continuous shooting frame rate and release time lag similar to those that are possible when image stabilizer is turned off. Automatically detects panning and then corrects camera shake only in one direction.

VR TRIPOD

It is often thought that image blur caused by camera shake can be prevented by using a tripod. Actually, however, even using a tripod may result in image blur because of tripod vibration caused by mirror or shutter movement at the time of exposure. The image stabilizer automatically differentiates the frequency of the vibration from that of camera shake, and changes algorithm to correct image blur caused by slight tripod vibration.