Leica SUMMILUX-M 50mm F/1.4 ASPH. Titanium “50 Jahre M-System”

Standard prime lens • Film era • Discontinued • Collectible


ASPH. The lens incorporates aspherical elements.

Production details

Announced:September 2004
Production type:Small-batch production: 550 (five hundred fifty) units
Availability: Sold out
Original name:LEICA SUMMILUX-M 1:1.4/50 ASPH.
System:Leica M (1954)

Model history (8)

Leitz Wetzlar XENON 50mm F/1.5 [LSM]M7 - 51mA51 1936 
Leitz Wetzlar / Leitz Canada SUMMARIT 50mm F/1.5 [LSM]M7 - 51mE41 1949 
Leitz Wetzlar / Leitz Canada SUMMARIT 50mm F/1.5M7 - 51mE41 1954 
Leitz Wetzlar SUMMILUX 50mm F/1.4 [I]M7 - 51mE43 1959 
Leitz Wetzlar SUMMILUX 50mm F/1.4 (548 units) [LSM] 1960 
Leitz Wetzlar SUMMILUX 50mm F/1.4 [II]M7 - 51mE43 1961 
Leitz Wetzlar SUMMILUX 50mm F/1.4 [II]M7 - 51mE43 1968 
Leitz Wetzlar SUMMILUX 50mm F/1.4 “Oskar Barnack 100th Anniversary” (1000 units) 1979 
Leitz Wetzlar SUMMILUX 50mm F/1.4 “Leica 1913-1983” (200 units) 1983 
Leica SUMMILUX-M 50mm F/1.4 “150 Jahre Photographie, 75 Jahre Leica Photographie” (1250 units) 1989 
Leica SUMMILUX-M 50mm F/1.4 Gold “Sultan of Brunei” (350 units) 1992 
Leica SUMMILUX-M 50mm F/1.4 Platinum “Sultan of Brunei” (250 units) 1992 
Leica SUMMILUX-M 50mm F/1.4 “Traveller Edition” (500 units) 1994 
Leica SUMMILUX-M 50mm F/1.4 [III]M7 - 50.7mE46 1995 
Leica SUMMILUX-M 50mm F/1.4 “150 Jahre Optik” (30 units) 1999 
Leica SUMMILUX 50mm F/1.4 [LSM] 1999 
Leica SUMMILUX-M 50mm F/1.4 for M6 TTL Millennium (2075 units) 2000 
Leica SUMMILUX-M 50mm F/1.4 “Al-Thani” (16 units) 2001 
Leica SUMMILUX-M 50mm F/1.4 ASPH. [IV]M8 - 50.7mE46 2004 
Leica SUMMILUX-M 50mm F/1.4 ASPH. Titanium “50 Jahre M-System” (550 units) 2004 
Leica SUMMILUX-M 50mm F/1.4 ASPH. “9/11 Memorial” (1 unit) 2005 
Leica SUMMILUX-M 50mm F/1.4 ASPH. “LHSA Special Edition” (1500 units) 2005 
Leica SUMMILUX-M 50mm F/1.4 ASPH. “60 Years PRC” (60 units) 2009 
Leica SUMMILUX-M 50mm F/1.4 ASPH. “China’s 1911 Revolution” (101 units) 2011 
Leica SUMMILUX-M 50mm F/1.4 ASPH. “Edition Hermès” (300 units) 2012 
Leica SUMMILUX-M 50mm F/1.4 ASPH. “Edition 100” (101 units) 2014 
Leica SUMMILUX-M 50mm F/1.4 ASPH. “20th Anniversary Map Camera” (20 units) 2015 
Leica SUMMILUX-M 50mm F/1.4 ASPH. “Correspondent” (125 units) 2015 
Leica SUMMILUX-M 50mm F/1.4 ASPH. Black 2015 
Leica SUMMILUX-M 50mm F/1.4 ASPH. “Leica Galerie Frankfurt” (50 units) 2016 
Leica SUMMILUX-M 50mm F/1.4 ASPH. “Meister Edition Berlin” (20 units) 2017 
Leica SUMMILUX-M 50mm F/1.4 ASPH. “Jim Marshall” (50 units) 2017 
Leica SUMMILUX-M 50mm F/1.4 ASPH. “ROYAL SELANGOR” (10 units) 2018 
Leica SUMMILUX-M 50mm F/1.4 ASPH. “SC Asset” (30 units) 2019 
Leica SUMMILUX-M 50mm F/1.4 ASPH. for M10-P “White” (350 units) 2019 

Features highlight

Ultra fast
9 blades
Built-in hood


Optical design
Focal length:50mm
Maximum format:35mm full frame
Mount and Flange focal distance:Leica M [27.8mm]
Diagonal angle of view:46.8°
Lens construction:8 elements - 5 groups
1 ASPH, 2 AD, 3 HR
Floating element system
Diaphragm mechanism
Diaphragm type:Manual
Aperture control:Aperture ring
Number of blades:9 (nine)
Coupled to the rangefinder:Yes
Closest focusing distance:0.7m (coupled focusing)
Maximum magnification ratio:1:11.3 at the closest focusing distance
Focusing modes:Manual focus only
Manual focus control:Focusing tab
Physical characteristics
Weight:<No data>
Maximum diameter x Length:⌀53.5×52.5mm
Filters:Screw-type 46mm
Lens hood:Built-in telescopic round

*) Source of data: Scarce manufacturer's technical data + own research.

**) Some basic information is missing in the specification as it was not provided by the manufacturer.

35mm equivalent focal length and speed (on APS-H cameras)

In terms of FoV & DoF
Camera series [Crop factor] Focal length SpeedMax MR Dia. angle of view
Leica M8/M8.2 APS-H [1.33x] 66.5mm F/1.91:8.5 36°

Manufacturer description #1

03 - 09/2004 - Exclusive special titanium series to mark 50th anniversary of the Leica rangefinder system

To mark the 50th anniversary of the Leica M system, Leica Camera AG, Solms, will be presenting a special limited edition of the LEICA M7 of solid titanium at photokina 2004 in Cologne. The exclusive camera equipment combines the tradition of a proven photographic tool – the Leica M camera - with the modernity of the high-tech material titanium and the latest in lens construction. The set includes the camera and the high-speed universal lens SUMMILUX-M f/1.4/50mm ASPH., which was only recently presented as a completely new design with improved imaging performance. The titanium cameras in the set bear the imprint "1954 - 2004 50 Years M System" on the camera top. This is the period from the introduction of the first Leica camera with M bayonet – the LEICA M3 in 1954 - through to its anniversary year 2004. The titanium cameras also bear a special serial number of 3.000.050 to 3.000.550 and are available only in a limited number of 500 sets worldwide.

For aficionados of particularly high-quality collectors items, the Solms-based company is also offering the anniversary set of the titanium LEICA M7 with special extras. This exclusive offer includes the three high-performance lenses LEICA SUMMICRON-M f/2/28mm ASPH., SUMMILUX-M f/1.4/50mm ASPH. and LEICA APO-SUMMICRON-M f/2/90mm ASPH. lenses in titanium, which together with the LEICA M7 come in a RIMOWA case with a titanium finish. The set is limited to only 50 cameras also has the anniversary engraving and the serial numbers 3.000.000 to 3.000.050. In addition, each one is engraved with one of the years between 1954 and 2004.

The high-tech material titanium is particularly resistant and has high impact strength. As hard as but much lighter than steel, and twice as stable as aluminum, titanium is used in aerospace construction for example, when high stability with a low weight is required. Thus, the special titanium series of LEICA M7 provides a particularly durable exterior without impacting the weight of the camera equipment. "Just the opposite, the use of this exclusive metal leaves the titanium LEICA M7 some 80g lighter than the proven M series. In addition, the even and matt-shining, silver-gray titanium surface gives the camera and lenses an unmistakable, exclusive look, making the anniversary edition such an elegant collector's item with an air of luxury," says Jean-Jacques Viau, marketing manager at the Photo Business Unit of Leica Camera AG.

Both anniversary sets come supplied with the newly published book '50 Years Leica M' by Günter Osterloh, the former head of the Leica Academy. The book, written in German and English, provides a comprehensive overview of all the Leica M model. The now freelance technical book author and seminar leader also presents the origins of Leica and in particular the people who made a special contribution to the Leica legend. The book '50 Years Leica M' by Günter Osterloh will be officially presented at this year's Frankfurt Book Fair in the autumn.

A certificate personally signed by Hanns-Peter Cohn, the CEO of Leica Camera AG, and Ralf Coenen, CTO of Leica Camera AG, rounds off the anniversary edition.

The technical features of the LEICA M7 remain unchanged in the titanium anniversary model. The camera differs from the tried and trusted M series in its 30 external parts of solid titanium, manufactured in a complex production process. The use of the high-tech material titanium is about five times more demanding than brass or aluminum. The material is rendered resistant to fingerprints through a particularly hard ceramic oxide coating applied in a high-vacuum procedure.

To match the silk matt shine of the titanium surface, the LEICA M7 has been given an exclusive black leather covering of greased saddle leather. The vegetably tanned leather is particularly pleasing to the touch and with frequent use acquires the patina of high-quality leather that is much appreciated by aficionados. Color-coordinated leather carrying straps underlines the elegant appearance of the camera.

The LEICA SUMMILUX-M f/1.4/50mm ASPH. is a complete redesign of the high-speed standard lens for the Leica rangefinder camera. The use of an aspherical element has significantly improved the imaging performance compared with the old model. The LEICA SUMMILUX-M f/1.4/50mm ASPH. is the first Leica M lens to have a "floating element": the last lens element alters its position in relation to the rest of the optical system during focusing - thereby achieving outstanding imaging quality even in the close-up range. To achieve homogeneously high imaging performance over the whole field, the LEICA SUMMILUX-M f/1.4/50mm ASPH. not only features high-refraction glass, but also two elements with anomalous color dispersion (partial dispersion), one of which originated in the former Leitz glass laboratory. Whether selective definition in the close range, high-contrast available light applications or landscapes with great field depth - the LEICA SUMMILUX-M f/1.4/50mm ASPH. delivers a convincing performance in all of these situations.

The titanium anniversary set will be available from Leica retailers from October 2004.

Manufacturer description #2

The LEICA M7 Titanium special-edition model includes an M7 with its cap, base cover and controls in solid titanium. In a production run of 500 units, it is offered as a set together with the LEICA SUMMILUX-M 50 mm f/1.4 ASPH. lens, also in titanium. The camera and lens bear matching serial numbers, and are supplied with a case, and as an added bonus, a special edition of the excellent book: "50 Years of the Leica M System".

Titanium is immensely time and cost intensive to machine, but its high strength and light weight are major benefits. Consequently, the M7 Titanium is corrosion-proof and 13% lighter than a standard M7. The special-edition model is also vapor-coated with an ultra-thin layer of silicon dioxide, eliminating the problem of fingerprints.

Typical application


Ultra-fast full-frame standard prime lens

Genres or subjects of photography (5):

Landscapes • Cityscapes • Buildings • Interiors • Portraits

Recommended slowest shutter speed when shooting static subjects handheld:

1/50th of a second

Notify of

Copy this code

and paste it here *

Inline Feedbacks
View all comments

Copyright © 2012-2022 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

35mm full frame

43.27 24 36
  • Dimensions: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm
  • Area: 864mm2


Sorry, no additional information is available.

Aspherical elements

Aspherical elements (ASPH, XA, XGM) are used in wide-angle lenses for correction of distortion and in large-aperture lenses for correction of spherical aberration, astigmatism and coma, thus ensuring excellent sharpness and contrast even at fully open aperture. The effect of the aspherical element is determined by its position within the optical formula: the more the aspherical element moves away from the aperture stop, the more it influences distortion; close to the aperture stop it can be particularly used to correct spherical aberration. Aspherical element can substitute one or several regular spherical elements to achieve similar or better optical results, which allows to develop more compact and lightweight lenses.

Use of aspherical elements has its downsides: it leads to non-uniform rendering of out-of-focus highlights. This effect usually appears as "onion-like" texture of concentric rings or "wooly-like" texture and is caused by very slight defects in the surface of aspherical element. It is difficult to predict such effect, but usually it occurs when the highlights are small enough and far enough out of focus.

Low dispersion elements

Low dispersion elements (ED, LD, SD, UD etc) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. This type of glass exhibits low refractive index, low dispersion, and exceptional partial dispersion characteristics compared to standard optical glass. Two lenses made of low dispersion glass offer almost the same performance as one fluorite lens.

Low dispersion elements

Low dispersion elements (ED, LD, SD, UD etc) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. This type of glass exhibits low refractive index, low dispersion, and exceptional partial dispersion characteristics compared to standard optical glass. Two lenses made of low dispersion glass offer almost the same performance as one fluorite lens.

Canon's Super UD, Nikon's Super ED, Pentax' Super ED, Sigma's FLD ("F" Low Dispersion), Sony' Super ED and Tamron's XLD glasses are the highest level low dispersion glasses available with extremely high light transmission. These optical glasses have a performance equal to fluorite glass.

High-refraction low-dispersion elements

High-refraction low-dispersion elements (HLD) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

High Index, High Dispersion elements

High Index, High Dispersion elements (HID) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

Anomalous partial dispersion elements

Anomalous partial dispersion elements (AD) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

Fluorite elements

Synthetic fluorite elements (FL) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. Compared with optical glass, fluorite lenses have a considerably lower refraction index, low dispersion and extraordinary partial dispersion, and high transmission of infrared and ultraviolet light. They are also significantly lighter than optical glass.

According to Nikon, fluorite easily cracks and is sensitive to temperature changes that can adversely affect focusing by altering the lens' refractive index. To avoid this, Canon, as the manufacturer most widely using fluorite in its telephoto lenses, never uses fluorite in the front and rear lens elements, and the white coating is applied to the lens barrels to reflect light and prevent the lens from overheating.

Short-wavelength refractive elements

High and specialized-dispersion elements (SR) refract light with wavelengths shorter than that of blue to achieve highly precise chromatic aberration compensation. This technology also results in smaller and lighter lenses.

Blue Spectrum Refractive Optics

Organic Blue Spectrum Refractive Optics material (BR Optics) placed between convex and concave elements made from conventional optical glass provides more efficient correction of longitudinal chromatic aberrations in comparison with conventional technology.

Diffraction elements

Diffraction elements (DO, PF) cancel chromatic aberrations at various wavelengths. This technology results in smaller and lighter lenses in comparison with traditional designs with no compromise in image quality.

High refractive index elements

High refractive index elements (HR, HRI, XR etc) minimize field curvature and spherical aberration. High refractive index element can substitute one or several regular elements to achieve similar or better optical results, which allows to develop more compact and lightweight lenses.

Apodization element

Apodization element (APD) is in fact a radial gradient filter. It practically does not change the characteristics of light beam passing through its central part but absorbs the light at the periphery. It sort of softens the edges of the aperture making the transition from foreground to background zone very smooth and results in very attractive, natural looking and silky smooth bokeh.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.


Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),


CF – crop-factor of a sensor,
FL – focal length of a lens.


A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance can also be different.

The flange focal distance (FFD) is the distance from the mechanical rear end surface of the lens mount to the focal plane.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.


The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Floating element system

Provides correction of aberrations and ensures constantly high image quality at the entire range of focusing distances from infinity down to the closest focusing distance. It is particularly effective for the correction of field curvature that tends to occur with large-aperture, wide-angle lenses when shooting at close ranges.

The basic mechanism of the floating element system is also incorporated into the internal and rear focusing methods.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Fixed diaphragm

The aperture setting is fixed at F/1.4 on this lens, and cannot be adjusted.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.


Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.


Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.


Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.

Lens caps

Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.