Fujifilm FUJINON XF 27mm F/2.8 R WR

Wide-angle prime lens • Digital era

SHARE TWIT EMAIL

Abbreviations

XF The lens is designed for Fujifilm APS-C digital mirrorless cameras.
R The lens is equipped with aperture ring.
WR Dust-proof and Weather-Resistant lens.

Model history (2)

Fujifilm FUJINON XF 27mm F/2.8APS-CPancake lensA7 - 50.6m⌀39 2013 
Fujifilm FUJINON XF 27mm F/2.8 R WRAPS-CPancake lensA7 - 50.6m⌀39 2021 

Features highlight

APS-C
Fast
1
ASPH
MM
Compact
Lightweight
DP/WR
⌀39
filters

Specification

Production details:
Announced:January 2021
Production status: In production
Original name:FUJINON ASPHERICAL LENS SUPER EBC XF 27mm 1:2.8 R WR
System:Fujifilm X (2012)
Optical design:
Focal length:27mm
Speed:F/2.8
Maximum format:APS-C
Mount and Flange focal distance:Fujifilm X [17.7mm]
Diagonal angle of view:55.6° (Fujifilm X APS-C)
Lens construction:7 elements in 5 groups
1 ASPH
Diaphragm mechanism:
Diaphragm type:Automatic
Aperture control:Aperture ring (Manual settings + Auto Exposure setting)
Number of blades:7 (seven)
35mm equivalent focal length and speed:
35mm equivalent focal length:41mm (in terms of field of view)
35mm equivalent speed:F/4.3 (in terms of depth of field)
Focusing:
Closest focusing distance:0.6m
0.34m [MACRO]
Maximum magnification:1:10 at the closest focusing distance
Focusing modes:Autofocus, manual focus
Autofocus motor:Micromotor
Manual focus control:Focusing ring
Focus mode selector:None; focusing mode is set from the camera
Manual focus override in autofocus mode:Determined by the camera
Optical Image Stabilizer (OIS):
Built-in OIS:-
Physical characteristics:
Weight:84g
Maximum diameter x Length:⌀62×23mm
Weather sealing:Dust-proof and water-resistant barrel
Fluorine coating:-
Accessories:
Filters:Screw-type 39mm
Lens hood:LH-XF27 - Screw-type dome-shaped
Teleconverters:Not compatible
Source of data:
Manufacturer's technical data.

Compared to the Fujifilm FUJINON XF 27mm F/2.8

  • Fujifilm FUJINON XF 27mm F/2.8 R WR
    • Advantages: 2
    • Disadvantages: 0
  • Manufacturer description

    TOKYO, January 27, 2021 — FUJIFILM Corporation (President: Kenji Sukeno) is pleased to announce the launch of the “FUJINON Lens XF27mmF2.8 R WR” (XF27mmF2.8 R WR) in March 2021. It will be a new addition to the lineup of interchangeable XF lenses designed for X Series of mirrorless digital cameras, providing a compact lightweight design and outstanding image quality with Fujifilm's proprietary color reproduction technology.

    The XF27mmF2.8 R WR is a standard prime lens with focal length of 27mm (equivalent to 41mm in the 35mm format). It offers outstanding resolution in a compact design. The dust and weather resistant structure provides durability and the aperture ring offers excellent operability so that users can enjoy high-quality photography in a wide range of shooting scenes including snapshots, portraits, and landscape photography.

    The XF27mmF2.8 R WR has a focal length of 27mm (equivalent to 41mm in the 35mm format) and is highly versatile with the capability to depict subjects in a natural perspective. It has excellent resolution, which has received outstanding reviews with the previous model “FUJINON Lens XF27mm F2.8.” The XF27mmF2.8 R WR has the capability to capture subjects down to the finest detail. The compact design is the thinnest and lightest in the XF lens lineup* , weighing approximately 84g and just 23mm long. When mounted on the compact and lightweight mirrorless digital camera “FUJIFILM X-E4” which was also announced today, it offers high portability so the users can walk around and take photos with it. Operability and durability have been improved over the previous models thanks to the aperture ring which enables quick aperture value changes, a newly adopted dust and weather resistance and the ability to operate at low temperatures of down to -10℃. With this lens, users have the stability to continue shooting even in tougher environments such as in the light rain or harsh dusty outdoors.

    Today, Fujifilm also announced the launch of super telephoto zoom lens “FUJINON Lens XF70-300mmF4-5.6 R LM OIS WR” (XF70-300mmF4-5.6 R LM OIS WR). With the XF27mmF2.8 R WR and XF70-300mmF4-5.6 R LM OIS WR joining extensive lens lineup, Fujifilm offers lenses that cover a wide range of focal lengths to complement photographic pleasure delivered by the X Series.

    * Excluding the FUJINON Lens XF27mm F2.8 model discontinued with the launch of the new XF27mmF2.8 R WR.

    1. Product features

    (1) Excellent resolution in a compact design

    • The XF27mmF2.8 R WR consists of seven lens elements in five groups, including one aspherical lens that controls spherical aberration, field curvature and distortion aberration to achieve astonishing image sharpness. It has high resolution from the fully open aperture to deliver sharp images capturing even the finest details of subjects.
    • The focus system, which shifts the five elements of the lens front group, controls aberrations due to shooting distance. The XF27mmF2.8 R WR has a powerful DC motor delivering fast and accurate autofocus, making it easy for users to take high-quality photos.
    • This latest addition to the XF lens lineup* has outstanding resolution in a compact design that is the thinnest and lightest weighing approximately 84g and 23mm long. It offers excellent portability and is easy to carry around while mounted on a mirrorless digital camera. The reassuring presence helps users encourage subjects to express themselves naturally for portraits and other photography.

    (2) Aperture ring provides easy operability

    • The XF27mmF2.8 R WR has an aperture ring with an F-stop scale. The aperture setting can be quickly checked and changed, indicating how effective this lens is for quick snapshots when settings must be aligned instantaneously.
    • The A (auto) Position Lock** offers reliable operation, locking the aperture ring in place to avoid any unintentional adjustment during shooting.

    ** Turning the aperture ring from F16 to the A position, locks it in position. It will be unlocked by holding down the unlock button and turning from A position to F16.

    (3) Highly robust performance

    • The lens barrel is weather-sealed in seven points to ensure dust and weather resistance. It also operates at temperatures of down to -10℃. This lens enables to users to continue shooting outdoors even during a sudden rain.

    Lens hood LH-XF27 and lens hood cap LHCP-27 (included in the package of XF27mmF2.8 R WR)

    Together with the launch of the XF27mmF2.8 R WR, Fujifilm is also releasing the Lens Hood LH-XF27 and Lens Hood Cap LHCP-27 in March 2021, which support 39mm filter diameters.

    Alternatives in the Fujifilm X system

    Sorted by focal length and speed, in ascending order

    Lenses with similar focal length

    Sorted by manufacturer name

    Subscribe
    Notify of
    guest

    Copy this code

    and paste it here *

    0 comments
    Inline Feedbacks
    View all comments

    Wide-angle prime lens

    Sorry, no additional information is available.

    Pancake lens

    Pancake lenses get their name due to the thin and flat size. The other distinctive features are fixed focal length and light weight.

    First pancake lenses appeared in the 1950s and were standard prime lenses based on the famous Tessar design – a brilliantly simple design which was developed by Paul Rudolph in 1902, patented by Zeiss company and provided a good optical performance.

    With the improvement of optical technologies in the 1970s the optical design of pancake lenses became more complicated and the latest generation has overcome the limitations of traditional designs. As a result, pancake lenses are now also available in wide-angle and even short telephoto variations.

    Due to the increasing demand for cameras with a compact form factor, pancake lenses are experiencing a second wave of popularity while having reasonable prices, which makes them accessible to a wide range of photographers. Such lenses are especially useful for those who enjoy travel photography.

    Copyright © 2012-2023 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

    35mm full frame

    43.27 24 36
    • Dimensions: 36 × 24mm
    • Aspect ratio: 3:2
    • Diagonal: 43.27mm
    • Area: 864mm2

    Micromotor

    Aspherical elements

    Aspherical elements (ASPH, XA, XGM) are used in wide-angle lenses for correction of distortion and in large-aperture lenses for correction of spherical aberration, astigmatism and coma, thus ensuring excellent sharpness and contrast even at fully open aperture. The effect of the aspherical element is determined by its position within the optical formula: the more the aspherical element moves away from the aperture stop, the more it influences distortion; close to the aperture stop it can be particularly used to correct spherical aberration. Aspherical element can substitute one or several regular spherical elements to achieve similar or better optical results, which allows to develop more compact and lightweight lenses.

    Use of aspherical elements has its downsides: it leads to non-uniform rendering of out-of-focus highlights. This effect usually appears as "onion-like" texture of concentric rings or "wooly-like" texture and is caused by very slight defects in the surface of aspherical element. It is difficult to predict such effect, but usually it occurs when the highlights are small enough and far enough out of focus.

    Low dispersion elements

    Low dispersion elements (ED, LD, SD, UD etc) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. This type of glass exhibits low refractive index, low dispersion, and exceptional partial dispersion characteristics compared to standard optical glass. Two lenses made of low dispersion glass offer almost the same performance as one fluorite lens.

    Low dispersion elements

    Low dispersion elements (ED, LD, SD, UD etc) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. This type of glass exhibits low refractive index, low dispersion, and exceptional partial dispersion characteristics compared to standard optical glass. Two lenses made of low dispersion glass offer almost the same performance as one fluorite lens.

    Canon's Super UD, Nikon's Super ED, Pentax' Super ED, Sigma's FLD ("F" Low Dispersion), Sony' Super ED and Tamron's XLD glasses are the highest level low dispersion glasses available with extremely high light transmission. These optical glasses have a performance equal to fluorite glass.

    High-refraction low-dispersion elements

    High-refraction low-dispersion elements (HLD) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

    High Index, High Dispersion elements

    High Index, High Dispersion elements (HID) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

    Anomalous partial dispersion elements

    Anomalous partial dispersion elements (AD) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

    Fluorite elements

    Synthetic fluorite elements (FL) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. Compared with optical glass, fluorite lenses have a considerably lower refraction index, low dispersion and extraordinary partial dispersion, and high transmission of infrared and ultraviolet light. They are also significantly lighter than optical glass.

    According to Nikon, fluorite easily cracks and is sensitive to temperature changes that can adversely affect focusing by altering the lens' refractive index. To avoid this, Canon, as the manufacturer most widely using fluorite in its telephoto lenses, never uses fluorite in the front and rear lens elements, and the white coating is applied to the lens barrels to reflect light and prevent the lens from overheating.

    Short-wavelength refractive elements

    High and specialized-dispersion elements (SR) refract light with wavelengths shorter than that of blue to achieve highly precise chromatic aberration compensation. This technology also results in smaller and lighter lenses.

    Blue Spectrum Refractive Optics

    Organic Blue Spectrum Refractive Optics material (BR Optics) placed between convex and concave elements made from conventional optical glass provides more efficient correction of longitudinal chromatic aberrations in comparison with conventional technology.

    Diffraction elements

    Diffraction elements (DO, PF) cancel chromatic aberrations at various wavelengths. This technology results in smaller and lighter lenses in comparison with traditional designs with no compromise in image quality.

    High refractive index elements

    High refractive index elements (HR, HRI, XR etc) minimize field curvature and spherical aberration. High refractive index element can substitute one or several regular elements to achieve similar or better optical results, which allows to develop more compact and lightweight lenses.

    Apodization element

    Apodization element (APD) is in fact a radial gradient filter. It practically does not change the characteristics of light beam passing through its central part but absorbs the light at the periphery. It sort of softens the edges of the aperture making the transition from foreground to background zone very smooth and results in very attractive, natural looking and silky smooth bokeh.

    Unable to follow the link

    You are already on the page dedicated to this lens.

    Cannot perform comparison

    Cannot compare the lens to itself.

    Image stabilizer

    A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

    The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

    Original name

    Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.

    Format

    Format refers to the shape and size of film or image sensor.

    35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

    APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

    Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

    Angle of view

    Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

    As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

    A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

    This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),

    where:

    CF – crop-factor of a sensor,
    FL – focal length of a lens.

    Mount

    A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

    A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

    Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance can also be different.

    The flange focal distance (FFD) is the distance from the mechanical rear end surface of the lens mount to the focal plane.

    Lens construction

    Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

    Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

    Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

    Focal length

    The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.

    Speed

    The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

    In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

    Closest focusing distance

    The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

    Closest working distance

    The distance from the front edge of the lens to the subject at the maximum magnification.

    Magnification ratio

    Determines how large the subject will appear in the final image. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

    Manual focus override in autofocus mode

    Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

    Manual focus override in autofocus mode

    Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

    Electronic manual focus override is performed in the following way: half-press the shutter button, wait until the camera has finished the autofocusing and then focus manually without releasing the shutter button using the focusing ring.

    Manual diaphragm

    The diaphragm must be stopped down manually by rotating the detent aperture ring.

    Preset diaphragm

    The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

    Semi-automatic diaphragm

    The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

    Automatic diaphragm

    The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

    Fixed diaphragm

    The aperture setting is fixed at F/2.8 on this lens, and cannot be adjusted.

    Number of blades

    As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

    Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

    At maximum aperture, the opening will be circular regardless of the number of blades.

    Weight

    Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

    Maximum diameter x Length

    Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

    For lenses with collapsible design, the length is indicated for the working (retracted) state.

    Weather sealing

    A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

    Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

    Fluorine coating

    Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.

    Filters

    Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

    Lens hood

    A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

    The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

    Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

    Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.

    Teleconverters

    Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

    Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.

    Lens caps

    Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.