Vivitar Series 1 200mm F/3 VMC Auto

Medium telephoto prime lens • Film era • Discontinued

SHARE TWIT EMAIL

Abbreviations

VMC Multi-layer anti-reflection coating is applied to the surfaces of lens elements. This anti-reflection coating boosts light transmission, ensures sharp and high contrast images, minimizes ghosting and flares.

Features highlight

MF
Auto
8 blades
⌀72
filters
Built-in hood

Specification

Production details
Announced:1973
Production status: Discontinued
Original name:Vivitar Series 1 200mm 1:3 AUTO TELEPHOTO VMC
System:-
Optical design
Focal length:200mm
Speed:F/3
Maximum format:35mm full frame
Mount and Flange focal distance:Canon FD [42mm]
Contax/Yashica [45.5mm]
Konica AR [40.5mm]
M42 [45.5mm]
Minolta SR [43.5mm]
Nikon F [46.5mm]
Olympus OM [46mm]
Pentax K [45.5mm]
Diagonal angle of view:12.3°
Lens construction:6 elements in 6 groups
Diaphragm mechanism
Diaphragm type:Automatic
Aperture control:<No data>
Number of blades:8 (eight)
On Nikon D APS-C [1.53x] cameras
35mm equivalent focal length:306mm (in terms of field of view)
35mm equivalent speed:F/4.6 (in terms of depth of field)
Diagonal angle of view:8.1°
On Pentax K APS-C [1.53x] cameras
35mm equivalent focal length:306mm (in terms of field of view)
35mm equivalent speed:F/4.6 (in terms of depth of field)
Diagonal angle of view:8.1°
Focusing
Closest focusing distance:1.2m
Maximum magnification:1:4 at the closest focusing distance
Focusing modes:Manual focus only
Manual focus control:Focusing ring
Physical characteristics
Weight:823g (mount not specified)
Maximum diameter x Length:⌀80×116mm (mount not specified)
Weather sealing:-
Fluorine coating:-
Accessories
Filters:Screw-type 72mm
Lens hood:Built-in telescopic round
Teleconverters:<No data>
Sources of data
1. Manufacturer's technical data.
2. Vivitar Series 1 booklet (August 1976).

Manufacturer description #1

The typical better-quality 200mm lens has a maximum aperture of f3.5 or f4, and a minimum focusing distance of around 1.8 meters. Traditionally, a lens of this type has been designed to produce optimal results when photographing objects which are at a relatively far distance from the camera. Lens aberrations increase significantly as the lens is focused down to its closest focusing position, these aberrations being especially pronounced toward the edges of the format. In the past this problem was simply avoided by using special purpose lenses for close-up photography, while standard lenses continued to be optimized at infinity.

In designing a 200mm lens that would provide equally excellent images from infinity to a moderate close-up distance, Vivitar specialists introduced a stationary rear compensating lens to correct aberrations produced as the lens moves in relation to the film plane. These aberrations are most pronounced in the corners of the format. Light transmission through the center is relatively unaffected by focusing changes and corner performance is retained throughout the focusing range by the compensating element. The result of this patented design is that image sharpness is consistent throughout the format from center to edge, and at all focusing distances. The 200mm f3.0 is also a very high performance fast lens, with close focusing capabilities. The 200mm lens yields a 1:4 reproduction ratio at its closest focus position of 1.2 meters from the focal plane.

Manufacturer description #2

This lens shares with the Series 1, 135mm f2.3, the use of a uniquely positioned rear compensating element to automatically correct aberrations at all points from the closest focusing distance to infinity. It focuses as close as 4 feet and consequently will provide magnifications unusually large for this size focal length lens. It is also one of the fastest automatic 200mm telephoto lenses. The 4 x magnification over a normal lens combined with the large aperture make it an unusually desirable lens for true telephotography. It can be easily hand-held for sports and wildlife photography where a 200mm lens is considered a "normal" lens. The lens performs consistently in the areas of resolution and contrast regardless of the size of the magnification of the image from 4 feet to infinity. The lens barrel is tapered to fit the hand better, special vynil grips make focusing more positive, and there is a window to isolate the f stop in use.

From the editor

Made by Komine.

Notes

  • Independent-brand lenses were made for 35mm film SLR cameras by companies that competed with the camera manufacturers. Some came from factories that made lenses under their own brand names (Angenieux, Kiron, Sigma, Tamron, Tokina). Many others were national and international marketing organizations (Kalimar, Panagor, Rokunar, Soligor, Starblitz) that bought lenses from anonymous manufacturers. One firm — Vivitar — actually designed its own lenses and accessories, which were then subcontracted to manufacturing firms. Still others were private labels, sold only by specific photo specialty shops (Cambron, Quantaray, Spiratone).
  • The actual manufacturer of a Vivitar lens can be identified by the first digits of the serial number: 6 - Olympus, 9 - Cosina, 13 - Schneider-Kreuznach, 19 - Sigma, 22 - Kino Precision Industries, 25 - Ozone Optical, 28 - Komine, 32 - Makina Optical, 33 - Asanuma, 37 - Tokina, 42 - Eugen Bauer, 44 - Perkin Elmer, 47 - Chinon, 51 - Tokyo Trading, 56 - Kyoe Shoji, 61 - Samyang, 75 - Hoya, 77 - Kobori, 81 - Polar. This numbering system, however, was used by Vivitar only between 1969 and 1991 (approx.).

Typical application

Class:

Slow full-frame medium telephoto prime lens

Genres or subjects of photography (4):

Portraits • Distant subjects • Distant landscapes with perspective compression effect • Travel photography

Recommended slowest shutter speed when shooting static subjects handheld:

1/200th of a second

Lenses with similar focal length and speed

Sorted by manufacturer name

Subscribe
Notify of
guest

Copy this code

and paste it here *

0 comments
Inline Feedbacks
View all comments
Table of contents
Clickable
Pros and cons
Instruction manual
Clickable
Vivitar Series 1 series lenses (22)
Clickable

Vivitar Series 1 series lenses

Vivitar Series 1 program was an international effort dedicated to designing and producing advanced-technology optical systems for the professional and advanced amateur in 35mm film photography. These lenses were designed by Vivitar specialists and produced by third-party manufacturers such as Cosina, Kino Precision, Komine and Tokina. Catadioptric lenses were developed and manufactured in the USA in collaboration with the reflex lens specialists of the Perkin-Elmer Corporation, a company with vast experience in satellite-deployed astronomical optics. As Vivitar decided not to aggressively pursue the AF technology, all Series 1 AF lenses not only were produced, but also designed by Sigma.

Copyright © 2012-2023 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

35mm full frame

43.27 24 36
  • Dimensions: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm
  • Area: 864mm2

MF

Sorry, no additional information is available.

MF

Sorry, no additional information is available.

MF

Sorry, no additional information is available.

MF

Sorry, no additional information is available.

MF

Sorry, no additional information is available.

MF

Sorry, no additional information is available.

MF

Sorry, no additional information is available.

MF

Sorry, no additional information is available.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.

Format

Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),

where:

CF – crop-factor of a sensor,
FL – focal length of a lens.

Mount

A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance can also be different.

The flange focal distance (FFD) is the distance from the mechanical rear end surface of the lens mount to the focal plane.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.

Speed

The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Modified M42 mount

The mount has been modified by the manufacturer to allow exposure metering at full aperture.

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Fixed diaphragm

The aperture setting is fixed at F/3 on this lens, and cannot be adjusted.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.

Weight

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.

Filters

Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.

Teleconverters

Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.

Lens caps

Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.