10th Anniversary 2012-2022
More than just a camera lens database
Third-party lens

Tokina atx-i 11-20mm F/2.8 CF

Wide-angle zoom lens • Digital era

Abbreviations

ATX-I Professional lens with high quality optics and robust build. Meets the highest standards and provides excellent performance and flawless image quality unachievable with traditional optical technologies.
CF The lens is designed for APS-C digital SLR cameras only.

Model history

Tokina atx-i 11-20mm F/2.8 CFAPS-CA14 - 120.28m⌀82 2020 
Tokina AT-X Pro AF SD 11-20mm F/2.8 [IF] DXAPS-CA14 - 120.28m⌀82 2015 

Production details

Announced:June 2020
Production status: In production
Production type:Mass production
Original name:Tokina atx-i 11-20mm F2.8 CF
System:-

Features highlight

APS-C
Extreme AoV @ 11-15mm
Fast
Constant F/2.8
3 ASPH
3 SD
9 blades
IF
SDM
Focus Clutch
WR
IZ

Specification

Optical design
Focal length range:11mm - 20mm [1.8X zoom ratio]
Speed range:F/2.8 across the focal length range
Maximum format:APS-C
Mount and Flange focal distance:Canon EF [44mm]
Nikon F [46.5mm]
Diagonal angle of view:102.1° @ 11mm - 68.4° @ 20mm (Canon EOS APS-C)
104.2° @ 11mm - 70.5° @ 20mm (Nikon F APS-C)
Lens construction:14 elements - 12 groups
3 ASPH, 3 SD
Diaphragm mechanism
Diaphragm type:Automatic
Diaphragm control system:Mechanical (Nikon F)
Electromagnetic (Canon EF)
Aperture control:None; the aperture is controlled from the camera
Number of blades:9
Zooming
Zoom type:Rotary
Zooming method:Internal zooming
Focusing
Closest focusing distance:0.28m
Maximum magnification ratio:1:8.62 @ 20mm at the closest focusing distance
Focusing method:Internal focusing (IF)
Focusing modes:Autofocus, manual focus
Manual focus control:Focusing ring
Autofocus motor:Micromotor (Canon EF)
Silent Drive Module (Nikon F)
Focus mode selector:Tokina One Touch Focus Clutch Mechanism
Manual focus override in autofocus mode:-
Vibration Correction Module (VCM)
Built-in VCM:-
Physical characteristics
Weight:570g (Canon EF)
550g (Nikon F)
Maximum diameter x Length:⌀89×94mm (Canon EF)
⌀89×92mm (Nikon F)
Weather sealing:-
Water Repellent (WR) coating:Front element
Accessories
Filters:Screw-type 82mm
Lens hood:Bayonet-type BH-821 (petal-shaped)
Teleconverters:<No data>

*) Source of data: Manufacturer's technical data.


Manufacturer description

Leaving the honorable AT-X abbreviation, the letter "i" was newly added. "i" stands for "interactive", implying mutual communication between photographer and the lens. This is our believe that this series will provide a tight bond between photographer and the lens in order to capture in the image that the photographer sees around.

Exterior, specifications and performance of Tokina's popular and well acknowledged so far AT-X PRO lenses are reconsidered with the contemporary cameras in mind and launched under atx-i brand.

The Tokina atx-i 11-20mm F2.8 CF is designed as an ultra wide angle zoom lens for APS-C sensor DLSR cameras. It is the only f/2.8 fast ultra wide angle zoom lens for APS-C sized DSLR cameras on the current market.

Focal length 11-20mm that covers equivalent angle of wide prime 18mm, 21mm, 24mm, 28mm lenses makes this lens attractive to be chosen after standard zoom lens or initially possessed wide angle zoom kit lens.

A constant maximum aperture of f/2.8 throughout the entire zoom range is realized to achieve great results in low light conditions, for depth of field control and easy manual shooting, while maintaining a reasonable size and weight.

To achieve an exceptional optical performance required for ultra wide angle zoom lens 3 aspherical glass elements and 3 Super-Low Dispersion glass elements were used in order to minimize distortion, manage spherical aberration and astigmatism while achieving excellent edge-to edge resolution and high contrast through the entire image.

Anti-reflective multi-layer coating improves light transmission and minimizes reflections while newly applied water-repellent coating makes wiping and cleaning the surface of the front glass element easier.

Devoted to its traditions, Tokina incorporated a lot of metal parts inside the lens for a reassuring built quality and long time utilization in different shooting conditions.

The sophisticated exterior design is specifically developed to match the design of contemporary DSLR cameras.

The Tokina atx-i 11-20mm F2.8 CF for Nikon F mount incorporates internal Silent-Drive focusing Motor (SD-M) in combination with precise GMR sensor to allow the lens to AF accurately and fast.

One-touch focus Clutch mechanism allows to switch between autofocus and manual focus easy.

The overall length of the Tokina atx-i 11-20mm F2.8 CF does not change when focusing and zooming thanks to internal type of the focus. Zooming mechanism inside the barrel allows using C-PL filters attached.

High-Light Features:

  • Ultra-wide 11-20mm focal length
  • Constant maximum aperture of f/2.8
  • Excellent optical performance
  • Improved AF accuracy by updating the firmware
  • Internal Focus
  • Water-repellent coating
  • One-touch Focus Clutch mechanism
  • Greatly balanced cost performance

Ultra-wide 11-20mm focal length, constant maximum aperture of f/2.8 makes this lens an essential tool for the following genres of photography: landscape, group photos and environmental portraits, architecture (especially interiors) automobile photography, weddings, street snap and night sky photography.

The Tokina atx-i 11-20mm F2.8 CF is suggested for videographers and film makers in mind who shoot both stills and video professionally, featuring the following advantages for such a kind of users:

  • Wide cinematic angle enough to feel confident in small places.
  • Minimized focus breathing – the subject framing does not show big change when focus is adjusted from near to far.
  • Natural footage - the image is not distorted when panning due to very low distortion performance.
  • Constant aperture to use full zoom range while you are filming.
  • Excellent optical performance.

The Tokina atx-i 11-20mm F2.8 CF is a perfect match to use with gimbal.

  • Ideal wide angle fitting cinematic standards.
  • Light weight.
  • Zooming abilities that allow user to shoot in different angles using the same lens.
  • Since the overall length does not change thanks to internal type of focusing, there is no need to do gimbal calibration every time the angle of view was changed.
  • Great color rendering and resolution abilities.
  • Affordable price and high quality compared to really expensive cinema lenses.

Typical application

landscapes, interiors, buildings, cityscapes, travel

Tokina AT-X Pro AF SD 11-20mm F/2.8 [IF] DX

Tokina AT-X Pro AF SD 11-20mm F/2.8 [IF] DX
  • Advantages: 0
  • Disadvantages: 1

Tokina AT-X Pro AF SD 11-20mm F/2.8 [IF] DX

Lenses with similar focal length range

Sorted by manufacturer name

Your comment

Copy this code

and paste it here *

Copyright © 2012-2022 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

35mm full frame

43.27 24 36
  • Dimensions: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm

Travellers' choice

Note

Among autofocus lenses designed for 35mm full-frame mirrorless cameras only. Speed of standard and telephoto lenses is taken into account.

Professional lens

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Micromotor

Silent Drive Module

Tokina One Touch Focus Clutch Mechanism

Tokina’s exclusive One-touch Focus Clutch Mechanism allows the photographer to switch between AF and MF simply by snapping the focus ring forward for AF and back toward the camera to focus manually. The rotation of the focusing ring to the infinity or to the closest focusing distance before switching the ring from AF setting to MF is not required. There is no need to change the AF/MF switch on Nikon camera bodies and there is no second AF/MF switch on the lens for Canon, everything is accomplished by the focus ring.

Aspherical elements

Aspherical elements (ASPH, XA, XGM) are used in wide-angle lenses for correction of distortion and in large-aperture lenses for correction of spherical aberration, astigmatism and coma, thus ensuring excellent sharpness and contrast even at fully open aperture. The effect of the aspherical element is determined by its position within the optical formula: the more the aspherical element moves away from the aperture stop, the more it influences distortion; close to the aperture stop it can be particularly used to correct spherical aberration. Aspherical element can substitute one or several regular spherical elements to achieve similar or better optical results, which allows to develop more compact and lightweight lenses.

Use of aspherical elements has its downsides: it leads to non-uniform rendering of out-of-focus highlights. This effect usually appears as "onion-like" texture of concentric rings or "wooly-like" texture and is caused by very slight defects in the surface of aspherical element. It is difficult to predict such effect, but usually it occurs when the highlights are small enough and far enough out of focus.

Low dispersion elements

Low dispersion elements (ED, LD, SD, UD etc) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. This type of glass exhibits low refractive index, low dispersion, and exceptional partial dispersion characteristics compared to standard optical glass. Two lenses made of low dispersion glass offer almost the same performance as one fluorite lens.

Low dispersion elements

Low dispersion elements (ED, LD, SD, UD etc) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. This type of glass exhibits low refractive index, low dispersion, and exceptional partial dispersion characteristics compared to standard optical glass. Two lenses made of low dispersion glass offer almost the same performance as one fluorite lens.

Canon's Super UD, Nikon's Super ED, Pentax' Super ED, Sigma's FLD ("F" Low Dispersion), Sony' Super ED and Tamron's XLD glasses are the highest level low dispersion glasses available with extremely high light transmission. These optical glasses have a performance equal to fluorite glass.

High-refraction low-dispersion elements

High-refraction low-dispersion elements (HLD) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

High Index, High Dispersion elements

High Index, High Dispersion elements (HID) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

Anomalous partial dispersion elements

Anomalous partial dispersion elements (AD) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture.

Fluorite elements

Synthetic fluorite elements (FL) minimize chromatic aberrations and ensure excellent sharpness and contrast even at fully open aperture. Compared with optical glass, fluorite lenses have a considerably lower refraction index, low dispersion and extraordinary partial dispersion, and high transmission of infrared and ultraviolet light. They are also significantly lighter than optical glass.

According to Nikon, fluorite easily cracks and is sensitive to temperature changes that can adversely affect focusing by altering the lens' refractive index. To avoid this, Canon, as the manufacturer most widely using fluorite in its telephoto lenses, never uses fluorite in the front and rear lens elements, and the white coating is applied to the lens barrels to reflect light and prevent the lens from overheating.

Short-wavelength refractive elements

High and specialized-dispersion elements (SR) refract light with wavelengths shorter than that of blue to achieve highly precise chromatic aberration compensation. This technology also results in smaller and lighter lenses.

Blue Spectrum Refractive Optics

Organic Blue Spectrum Refractive Optics material (BR Optics) placed between convex and concave elements made from conventional optical glass provides more efficient correction of longitudinal chromatic aberrations in comparison with conventional technology.

Diffraction elements

Diffraction elements (DO, PF) cancel chromatic aberrations at various wavelengths. This technology results in smaller and lighter lenses in comparison with traditional designs with no compromise in image quality.

High refractive index elements

High refractive index elements (HR, HRI, XR etc) minimize field curvature and spherical aberration. High refractive index element can substitute one or several regular elements to achieve similar or better optical results, which allows to develop more compact and lightweight lenses.

Apodization element

Apodization element (APD) is in fact a radial gradient filter. It practically does not change the characteristics of light beam passing through its central part but absorbs the light at the periphery. It sort of softens the edges of the aperture making the transition from foreground to background zone very smooth and results in very attractive, natural looking and silky smooth bokeh.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.

Format

Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),

where:

CF – crop-factor of a sensor,
FL – focal length of a lens.

Mount

A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance can also be different.

The flange focal distance (FFD) is the distance from the mechanical rear end surface of the lens mount to the focal plane.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.

Speed

The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Electronic manual focus override is performed in the following way: half-press the shutter button, wait until the camera has finished the autofocusing and then focus manually without releasing the shutter button using the focusing ring.

Electromagnetic diaphragm control system

Provides highly accurate diaphragm control and stable auto exposure performance during continuous shooting.

Fixed focus

There is no helicoid in this lens and everything is in focus from the closest focusing distance to infinity.

Overall linear extension

The entire lens optical system moves straight backward and forward when focusing is carried out. This is the simplest type of focusing used mainly in wide-angle and standard prime lenses. It has the advantage of introducing relatively little change in aberrations with respect to change in focusing distance. With telephoto and super telephoto lenses this method becomes less beneficial in terms of operability because of the increased size and weight of the lens system.

Front group linear extension

The rear group remains fixed and only the front group moves straight backward and forward during focusing. This method is primarily used in zoom lenses and allows to design comparatively simple lens construction, but also places restrictions on zoom magnification and size reduction.

Front group rotational extension

The lens barrel section holding the front lens group rotates to move the front group backward and forward during focusing. This method of focusing is also used only in zoom lenses.

Internal focusing (IF)

Focusing is performed by moving one or more lens groups positioned between the front lens group and the diaphragm.

Methods of internal and rear focusing have the following advantages:

Rear focusing (RF)

Focusing is performed by moving one or more lens groups positioned behind the diaphragm.

Methods of internal and rear focusing have the following advantages:

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Fixed diaphragm

The aperture setting is fixed at F/2.8 on this lens, and cannot be adjusted.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.

Weight

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.

Filters

Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.

Teleconverters

Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.

Lens caps

Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.

Rotary zoom

The change of focal length is achieved by turning the zoom ring and the manual focusing - by turning the separate focusing ring.

Push/pull zooming allows for faster change of focal length, however conventional method based on the rotation of the zoom ring provides more accurate and smooth zooming.

Push/pull zoom

The change of focal length and the manual focusing is achieved by one and the same ring. The change of focal length happens when the photographer moves the ring towards the mount or backwards and the rotation of the ring leads to change of focus.

Push/pull zooming allows for faster change of focal length, however conventional method based on the rotation of the zoom ring provides more accurate and smooth zooming.

Zoom lock

The lens features a zoom lock to keep the zoom ring fixed. This function is convenient for carrying a camera with the lens on a strap because it prevents the lens from extending.

Power Zoom

The lens features electronically driven zoom mechanism. It provides smoother, more natural zoom movements than you could accomplish by hand.

The Holy Trinity of lenses

The Holy Trinity of lenses refers to a three-lens set that covers a focal length range from the ultra-wide focal length of 14-16mm all the way long to the telephoto focal length of 200mm. The set typically consists of a 16-35mm ultra-wide angle zoom lens, a 24-70mm standard zoom lens and a 70-200mm telephoto zoom lens and usually represents the best constant-aperture zoom lenses in a manufacturer's lineup. The set is designed to cover almost every genre of photography, be it landscapes, architecture, portraits, weddings, sports, travel or even wildlife (with teleconverter). However, it is also expensive, large and heavy.