Sigma 15mm F/2.8 EX Diagonal Fisheye

Fisheye lens • Film era • Discontinued

EX Professional lens with high quality optics and robust build. Meets the highest standards and provides excellent performance and flawless image quality unachievable with traditional optical technologies.
FISHEYE An ultra-wide angle lens with strong uncorrected barrel distortion and extreme 180-degree angle of view.

Model history

Sigma 15mm F/2.8 EX DG Diagonal FisheyeA7 - 60.15m-- 2005 
Sigma 15mm F/2.8 EX Diagonal FisheyeA7 - 60.15m-- 1999 
Sigma MF 15mm F/2.8 Fisheye ZENA7 - 60.15m-- 1990 
Sigma MF 16mm F/2.8 Filtermatic FisheyeA9 - 80.15m-- 1980 

Features highlight

Extreme AoV
Fast
Gelatine filters
Built-in hood

Compatibility

  • The autofocus will not be available with Nikon D40, D40X, D60, D3000-D3500, D5000-D5600 digital SLR cameras.
  • This lens may not work properly with Canon EOS cameras due to compatibility issues.

Specification

Production details
Announced:April 1999
Production status: Discontinued
Production type:Mass production
Original name:SIGMA 15mm 1:2.8 EX FISHEYE
Optical design
Focal length:15mm
Speed:F/2.8
Maximum format:35mm full frame
Mount:Canon EF
Minolta/Sony A
Nikon F
Pentax K
Sigma SA
Lens construction:7 elements - 6 groups
Diaphragm mechanism
Diaphragm control system:Mechanical (Nikon F, Pentax K)
Electromagnetic (Canon EF, Minolta/Sony A, Sigma SA)
Number of blades:7
Focusing
Closest focusing distance:0.15m
Maximum magnification ratio:1:3.8 at the closest focusing distance
Focusing method:<No information>
Focusing modes:Autofocus, manual focus
Manual focus control:Focusing ring
Autofocus motor:Micromotor (Canon EF, Sigma SA)
In-camera motor (Nikon F, Pentax K, Minolta/Sony A)
Focus mode selector:AF - M (Canon EF, Sigma SA)
None; focusing mode is set from the camera (Nikon F, Pentax K, Minolta/Sony A)
Manual focus override in autofocus mode:-
Optical Stabilizer (OS)
Built-in OS:-
Physical characteristics
Weight:330g (Nikon F)
Maximum diameter x Length:⌀73.5×70.5mm (Nikon F)
Weather sealing:-
Fluorine coating:-
Accessories
Filters:Removable front filters are not accepted
Additional features:Rear gelatin filter holder
Lens hood:Built-in petal-shaped
Teleconverters:<No information>

*) Source of data: Manufacturer's technical data.

Manufacturer description

This diagonal fisheye lens has an angle of view of 180 degrees in the diagonal direction as well as minimum shooting distance of 15cm (5.9 in.).

The minimum shooting distance of this lens is only 15cm (5.9 in.) and it has maximum magnification of 1:3.8.

This lens is supplied with a gelatin filter holder at the rear, allowing the use of gelatin filters.

The majority of Digital SLR cameras have a smaller image sensor size than 35mm film. Therefore, angle of view of 180 degrees cannot be obtained with most Digital SLR cameras. However, because it uses only the center part of the frame, peripheral distortion will be very low.

Typical application

scientific and industrial photography

Canon EF 15mm F/2.8 Fisheye

Sigma 15mm F/2.8 EX DG Diagonal Fisheye

Sigma 15mm F/2.8 EX DG Diagonal Fisheye
  • Advantages: 2
  • Disadvantages: 0

Sigma 15mm F/2.8 EX DG Diagonal Fisheye

Sigma 15mm F/2.8 EX DG Diagonal Fisheye
  • Advantages: 2
  • Disadvantages: 0

Sigma 15mm F/2.8 EX DG Diagonal Fisheye

Sigma 15mm F/2.8 EX DG Diagonal Fisheye
  • Advantages: 2
  • Disadvantages: 0

Sigma 15mm F/2.8 EX DG Diagonal Fisheye

Sigma 15mm F/2.8 EX DG Diagonal Fisheye
  • Advantages: 2
  • Disadvantages: 0

Your comment

Copy this code

and paste it here *

Copyright © 2012-2021 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

35mm full frame

43.27 24 36
  • Dimensions: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm

Fisheye lens

A fisheye lens is a type of ultra-wide angle lenses with extreme 180 degree angle of view. Unlike conventional wide-angle lenses, fisheyes are not corrected for distortion - strong barrel distortion is a characteristic of all lenses of such class.

Fisheye lenses are normally used for specialized purposes and unusual special effects in advertising, commercial, scientific, surveillance, meteorologic and astronomic photography, but also popular for shooting extremely wide landscapes, interiors, action sports and even funny close-up portraits.

There are two types of fisheye lenses:

Travellers' choice

Note

Among autofocus lenses designed for 35mm full-frame mirrorless cameras only. Speed of standard and telephoto lenses is taken into account.

One of the best fisheye primes

According to lens-db.com; among lenses designed for the same maximum format and mount.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Micromotor

In-camera motor

In-camera motor

Micromotor

In-camera motor

AF - M

AFAutofocus mode.
MManual focus mode.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.

Format

Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),

where:

CF – crop-factor of a sensor,
FL – focal length of a lens.

Mount

A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance from the lens mount to the film or sensor can also be different.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Flange focal distance

The flange focal distance (FFD), sometimes called the "flange back", is the distance from the mechanical rear end surface of the lens mount to the focal plane.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.

Speed

The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Manual focus override in autofocus mode

Allows to perform final focusing manually after the camera has locked the focus automatically. Note that you don't have to switch camera and/or lens to manual focus mode.

Electronic manual focus override is performed in the following way: half-press the shutter button, wait until the camera has finished the autofocusing and then focus manually without releasing the shutter button using the focusing ring.

Electromagnetic diaphragm control system

Provides highly accurate diaphragm control and stable auto exposure performance during continuous shooting.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.

Weight

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.

Filters

Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.

Teleconverters

Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.