Fuji Photo Film Fujinon 55mm F/2.2

Standard prime lens • Film era • Discontinued

Model history

Fuji Photo Film X-Fujinon 55mm F/2.2A4 - 40.6m⌀49 1979 
Fuji Photo Film Fujinon 55mm F/2.2 [Mod. M42]A4 - 40.6m⌀49

Designed for

Features highlight



Production details
Announced:<No information>
Production status: Discontinued
Production type:Mass production
Original name:FUJI PHOTO FILM CO. FUJINON 1:2.2 f=55mm
Optical design
Focal length:55mm
Maximum format:35mm full frame
Mount:M42 (modified)
Flange focal distance:45.5mm
Diagonal angle of view:42.9° (35mm full frame)
Lens construction:4 elements - 4 groups
Diaphragm mechanism
Diaphragm type:Automatic
Number of blades:5
Closest focusing distance:0.6m
Maximum magnification ratio:<No information>
Focusing method:<No information>
Focusing modes:Manual focus only
Manual focus control:Focusing ring
Physical characteristics
Maximum diameter x Length:⌀61×36mm
Filters:Screw-type 49mm
Lens hood:Screw-type (round)
Teleconverters:<No information>

*) Sources of data: Fujinon quality lenses to broaden your photographic horizons booklet ● Fujica AZ-1 owner's manual ● Fujica ST605 owner's manual ● Fujica ST605N booklet ● Fujica ST605N owner's manual.

Manufacturer description

Introduced as the standard lens of the FUJICA ST605N, this features an exceptionally light, compact design and economical price.

Typical application

landscapes, interiors, buildings, cityscapes, portraits, street, travel

Frequently asked questions

  • Can I use the Fujinon 55mm F/2.2 lens on my Fujifilm X-series APS-C digital mirrorless camera?

    Yes, use the M42 - Fujifilm X mount adapter and enable "SHOOT WITHOUT LENS" option in the camera menu. The 35mm equivalent focal length of this lens will be 83.6mm (29° angle of view) due to the crop factor of the APS-C-size image sensor of Fujifilm X-series digital mirrorless cameras. The automatic aperture control as well as automatic stop down will not be available. You will have to control the aperture and focus manually. For accurate focusing, try different manual focus assist options (zoomed-in view, digital split image, digital microprism or focus peak highlight) available with your camera, or use the lens' distance scale. See also manual focus photography tips.

Lenses with similar focal length and speed

Sorted by manufacturer name

Asahi Auto-Takumar 55mm F/1.8 [332] ⌀46 1958 
Asahi Auto-Takumar 55mm F/1.8 [345] ⌀49 1960 
Asahi Auto-Takumar 55mm F/1.9 ⌀46 1958 
Asahi Auto-Takumar 55mm F/2 [341, 34100] ⌀46 1958 
Asahi Auto-Takumar 55mm F/2.2 ⌀46 1961 
Asahi SMC Takumar 50mm F/1.4 [37908] [Mod. M42] ⌀49 1972 
Asahi SMC Takumar 55mm F/1.8 [37108] [Mod. M42] ⌀49 1972 
Asahi SMC Takumar 55mm F/2 [37109] [Mod. M42] ⌀49 1973 
Asahi Super-Multi-Coated Takumar 50mm F/1.4 [37902] [Mod. M42] ⌀49 1971 
Asahi Super-Multi-Coated Takumar 55mm F/1.8 [37101, 37104, 37106] [Mod. M42] ⌀49 1971 
Asahi Super-Takumar 50mm F/1.4 [378, 37800, 37801] ⌀49 1965 
Asahi Super-Takumar 50mm F/1.4 [358, 35800] ⌀49 1964 
Asahi Super-Takumar 50mm F/1.4 for SL [37802] ⌀49 1969 
Asahi Super-Takumar 50mm F/1.4 Gold ⌀49 1970 
Asahi Super-Takumar 55mm F/1.8 [345-2, 345-5, 33450, 34520] ⌀49 1962 
Asahi Super-Takumar 55mm F/1.8 [371, 37100, 37101, 37104, 37106] ⌀49 1965 
Asahi Super-Takumar 55mm F/2 [345-1, 345-6, 345-3] ⌀49 1962 
Asahi Super-Takumar 55mm F/2 [37102, 37103, 37107] ⌀49 1965 
Asahi Takumar 55mm F/1.8 ⌀46 1958 
Asahi Takumar 55mm F/2.2 ⌀46 1957 
Asahi Takumar 58mm F/2 ⌀46 1957 
Asahi Takumar 58mm F/2.4 ⌀46 1957 
Auto Mamiya/Sekor 50mm F/2 ⌀52
Auto Mamiya/Sekor 50mm F/2.8 ⌀52
Auto Mamiya/Sekor 55mm F/1.4 ⌀55
Auto Mamiya/Sekor 55mm F/1.8 ⌀52
Auto Mamiya/Sekor SX 50mm F/2 [Mod. M42] ⌀52
Auto Mamiya/Sekor SX 55mm F/1.4 [Mod. M42] ⌀52
Auto Mamiya/Sekor SX 55mm F/1.8 [Mod. M42] ⌀52
Carl Zeiss Classic Planar T* 50mm F/1.4 ZE / ZF.2 / ZK / ZS E58 2006 
Carl Zeiss Planar (HFT) 50mm F/1.8 (Ifbagon, OPTON, Rollei-HFT, Voigtlander Color-Ultron) E49 1970 
Carl Zeiss Tessar 50mm F/2.8 B50 1966 
Carl Zeiss Ultron 50mm F/1.8 B50 1968 
Fuji Photo Film (EBC) Fujinon 50mm F/1.4 [Mod. M42] ⌀49
Fuji Photo Film (EBC) Fujinon 55mm F/1.8 [Mod. M42] ⌀49
Fuji Photo Film Fujinon 50mm F/1.6 [Mod. M42] ⌀49
Fuji Photo Film Fujinon 55mm F/1.6 [Mod. M42] ⌀49
Mamiya-Sekor 58mm F/1.7 for CP ⌀52 1964 
Olympus F.Zuiko Auto-S 50mm F/1.8 for FTL [Mod. M42] ⌀49 1971 
Olympus G.Zuiko Auto-S 50mm F/1.4 for FTL [Mod. M42] ⌀49 1971 
Ricoh Auto Rikenon 50mm F/1.4 EE
Ricoh Auto Rikenon 50mm F/1.7 ⌀52
Ricoh Auto Rikenon 50mm F/1.7 EE
Ricoh Auto Rikenon 50mm F/2 ⌀52
Ricoh Auto Rikenon 50mm F/2.8 ⌀52
Ricoh Auto Rikenon 55mm F/1.4 ⌀52
Ricoh Auto Rikenon 55mm F/1.8 ⌀52
Ricoh Auto Rikenon 55mm F/2.8 ⌀52
Schneider-KREUZNACH Xenon 50mm F/1.9 ⌀49
Tomioka Auto Chinon 55mm F/1.2 ⌀55 1970 
Tomioka Auto Chinon 55mm F/1.4 (Revuenon) ⌀55
Tomioka Auto Cosinon 55mm F/1.2 ⌀55 1970 
Tomioka Auto Revuenon 55mm F/1.2 ⌀55 1970 
Tomioka Auto Yashinon 55mm F/1.2 ⌀55 1970 
Tomioka Auto Yashinon DS-M 55mm F/1.2 ⌀55 1973 
Tomioka Kogaku Auto Tominon 55mm F/1.2 ⌀55 1970 
Tomioka Tominon C. 50mm F/2 ⌀46
Yashica Auto Yashinon 50mm F/2 ⌀52
Yashica Auto Yashinon 55mm F/1.8
Yashica Auto Yashinon DS-M 50mm F/1.4 ⌀55
Yashica Auto Yashinon DS-M 50mm F/1.7 ⌀52
Yashica Auto Yashinon-DS 50mm F/1.4 ⌀55
Yashica Auto Yashinon-DS 50mm F/1.7 ⌀52
Yashica Auto Yashinon-DS 50mm F/1.9 ⌀52
Yashica Auto Yashinon-DS 50mm F/2 ⌀52
Yashica Auto Yashinon-DX 50mm F/1.4 ⌀55
Yashica Auto Yashinon-DX 50mm F/1.7 ⌀52
Yashica Auto Yashinon-DX 50mm F/2 ⌀52
Small-batch production
Cosina Tokyo Kogaku Auto-Topcor 58mm F/1.4 ⌀58 2003 

Your comment

Copy this code

and paste it here *

Copyright © 2012-2021 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

35mm full frame

43.27 24 36
  • Dimensions: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm

Travellers' choice


Among autofocus lenses designed for 35mm full-frame mirrorless cameras only. Speed of standard and telephoto lenses is taken into account.

One of the best fast standard primes

According to lens-db.com; among lenses designed for the same maximum format and mount.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.


Sorry, no additional information is available.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.


Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),


CF – crop-factor of a sensor,
FL – focal length of a lens.


A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance from the lens mount to the film or sensor can also be different.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Flange focal distance

The flange focal distance (FFD), sometimes called the "flange back", is the distance from the mechanical rear end surface of the lens mount to the focal plane.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.


The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Electromagnetic diaphragm control system

Provides highly accurate diaphragm control and stable auto exposure performance during continuous shooting.

Modified M42 mount

The mount has been modified by the manufacturer to allow exposure metering at full aperture.

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.


Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.


Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.


Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.