Carl Zeiss Planar HFT 80mm F/2.8 (Rollei-HFT)

Standard prime lens • Film era • Discontinued

Carl Zeiss Planar HFT 80mm F/2.8 (Rollei-HFT)

Abbreviations

HFT High Fidelity Transfer Coating is applied to the surface of lens elements. It boosts light transmission, ensures sharp and high contrast images, minimizes ghosting and flares. Learn more

Production details

Announced:<No data>
Production type:Mass production
Production status: Discontinued
Original name:Carl Zeiss Planar 1:2,8 f=80mm HFT
Also known as:Rollei-HFT Planar 1:2,8 f=80mm
System:Rolleiflex SLX (1976)

Model history (3)

Features highlight

6x6
Fast
LS
Auto
MF
Compact

Specification

Optical design
Focal length:80mm
Speed:F/2.8
Maximum format:Medium format 6x6
Mount and Flange focal distance:Rolleiflex SLX [74mm]
Diagonal angle of view:52.3° (Medium format)
Lens construction:7 elements - 5 groups
Diaphragm mechanism
Diaphragm type:Automatic
Aperture control:Aperture ring (Manual settings + Auto Exposure setting)
Number of blades:<No data>
Built-in leaf shutter
Type:Electronically controlled Rollei
Speeds:30 - 1/500 + T, B
Focusing
Closest focusing distance:0.9m
Maximum magnification ratio:<No data>
Focusing modes:Manual focus only
Manual focus control:Focusing ring
Physical characteristics
Weight:590g
Maximum diameter x Length:⌀81.5×63mm
Accessories
Filters:Bayonet-type VI
Lens hood:Bayonet-type 206 020 (square)
Teleconverters:<No data>

*) Sources of data: Rollei lenses for 6006/SLX booklet (October 1983) ● Rolleiflex 6006 user's manual ● Rolleiflex 6006 user's manual (May 1985) ● Rolleiflex 6006, Rolleiflex 6002 booklet (October 1985) ● Rolleiflex 6002 user's manual ● Rollei Fototechnic 6006 system booklet (December 1983).

Manufacturer description #1

A superior lens for a superior camera

Anyone who wants to secure the advantages of an exceptional camera design must also have a selection of modern high-performance lenses, in a logical range of focal lengths and apertures. In direct and close co-operation with Carl Zeiss and Schneider, Kreuznach, a range of interchangeable lenses was designed for the Rolleiflex 6006 and 6002 that represents the state of the art and opens up all the possibilities of creative photography.

The incorporation of direct-drive technology in these lenses is unique. Controlled by the camera's microprocessor, two built-in linear motors move the iris and shutter leaves with virtually zero delay. They operate with extreme precision and are almost free from wear. All the lenses have infinitely variable automatic aperture regulation and an electronically controlled leaf central shutter with speeds from 1/500 to 30 seconds. The connection between camera and lens is achieved using electronic contacts, i.e. hermetically sealed, with no moving parts and no wear.

Top quality Zeiss lenses

Every Zeiss lens is a synthesis of almost a hundred years' experience combined with the most advanced computer-aided design methods.

Even though automatic computer programs have been introduced to calculate the optimum correction of aberrations, the basic principles of the design still play a major part in the achievement of the development objective. The basic design depends entirely on the know-how of the designer.

Internationally renowed lens designs such as Tessar, Planar, Sonnar and Distagon are clear proof of the value of Zeiss's experience and represent the highest standards of optical precision and image quality. The uniform and neutral colour characteristics of all Zeiss lenses is the result of the anti-reflection coating, originally developed by Zeiss and patented as long ago as 1935: one of the most fundamental optical achievement of this century. The close collaboration between Carl Zeiss and Rollei has led most recently to the HFT (High Fidelity Transfer) coating used today. This provides strong suppression of reflections and high colour brilliance.

The quality of a lens makes itself evident in the sharpness, contrast, colour reproduction and brilliance of the image. Zeiss lenses give maximum priority to these requirements. The MTF measuring system (Modeulation Transfer Function) perfected by Zeiss ensures that every single Zeiss lens made for Rollei cameras is distinguished by precise resolution and contrast, superior correction of residual aberrations and a very good illumination of the image field.

Rollei is proud of the fact that it manufactures some of these top-quality Zeiss lenses under licence. This close collaboration with Zeiss has led to a number of design improvements for which Rollei must take some of the credit. Schneider, Kreuznach also participate in this collaboration between experts. The world-wide reputation of German optical precision is largely due to the designs produced by these two companies. Their practical, often pioneering, innovations virtually speak for themselves.

Manufacturer description #2

The universally applicable normal focal length, with exceptionally good correction and flatness of field, maximum sharpness right to the corners of the picture. The large aperture allows accurate, quick focusing. Also very good performance when reverse-mounted.

Manufacturer description #3

The standard focal length for universal applications; exceptional correction and flat field, extreme definition to the corners of the image. The relatively large aperture permits precise focusing on relevant image spots.

Classification

Typical application (7)

Landscapes • Cityscapes • Buildings • Interiors • Portraits • Street • Travel photography

Frequently asked questions (1)

  • Is the Carl Zeiss Planar HFT 80mm F/2.8 lens compatible with teleconverters?

    Schneider-KREUZNACH AF-Longar 1,4x HFT, Schneider-KREUZNACH Longar 1,4x HFT and Rollei Tele Converter 2 x HFT were indeed available for Rolleiflex SLX-system lenses. "Rolleiflex 6000-System. Lenses and Dedicated Accessories" says: "Schneider Longar 1.4x HFT teleconverter: high-quality teleconverter extending the focal length of the basic lens by a factor of 1.4, specially matched with the wide-aperture Schneider lenses 80 mm f/2, 180 mm f/2.8 and 300 mm f/4. Also well-suited for all other telephoto lenses. The 1.4x Longar should not be used in conjunction with the Planar 80 mm f/2.8, since the exit pupil of the Planar would damage the entrance pupil of the converter. 2x Teleconverter HFT: designed for use with any of the standard, telephoto and zoom lenses, this converter doubles the focal length of the basic lens.".

Alternatives in the Rolleiflex SLX system

///// Sorted by focal length and speed, in ascending order /////

Subscribe
Notify of
guest

Copy this code

and paste it here *

0 comments
Inline Feedbacks
View all comments

Copyright © 2012-2022 Evgenii Artemov. All rights reserved. Translation and/or reproduction of website materials in any form, including the Internet, is prohibited without the express written permission of the website owner.

35mm full frame

43.27 24 36
  • Dimensions: 36 × 24mm
  • Aspect ratio: 3:2
  • Diagonal: 43.27mm
  • Area: 864mm2

MF

Sorry, no additional information is available.

Unable to follow the link

You are already on the page dedicated to this lens.

Cannot perform comparison

Cannot compare the lens to itself.

Image stabilizer

A technology used for reducing or even eliminating the effects of camera shake. Gyro sensors inside the lens detect camera shake and pass the data to a microcomputer. Then an image stabilization group of elements controlled by the microcomputer moves inside the lens and compensates camera shake in order to keep the image static on the imaging sensor or film.

The technology allows to increase the shutter speed by several stops and shoot handheld in such lighting conditions and at such focal lengths where without image stabilizer you have to use tripod, decrease the shutter speed and/or increase the ISO setting which can lead to blurry and noisy images.

Original name

Lens name as indicated on the lens barrel (usually on the front ring). With lenses from film era, may vary slightly from batch to batch.

Format

Format refers to the shape and size of film or image sensor.

35mm is the common name of the 36x24mm film format or image sensor format. It has an aspect ratio of 3:2, and a diagonal measurement of approximately 43mm. The name originates with the total width of the 135 film which was the primary medium of the format prior to the invention of the full frame digital SLR. Historically the 35mm format was sometimes called small format to distinguish it from the medium and large formats.

APS-C is an image sensor format approximately equivalent in size to the film negatives of 25.1x16.7mm with an aspect ratio of 3:2.

Medium format is a film format or image sensor format larger than 36x24mm (35mm) but smaller than 4x5in (large format).

Angle of view

Angle of view describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view.

As the focal length changes, the angle of view also changes. The shorter the focal length (eg 18mm), the wider the angle of view. Conversely, the longer the focal length (eg 55mm), the smaller the angle of view.

A camera's angle of view depends not only on the lens, but also on the sensor. Imaging sensors are sometimes smaller than 35mm film frame, and this causes the lens to have a narrower angle of view than with 35mm film, by a certain factor for each sensor (called the crop factor).

This website does not use the angles of view provided by lens manufacturers, but calculates them automatically by the following formula: 114.6 * arctan (21.622 / CF * FL),

where:

CF – crop-factor of a sensor,
FL – focal length of a lens.

Mount

A lens mount is an interface — mechanical and often also electrical — between a camera body and a lens.

A lens mount may be a screw-threaded type, a bayonet-type, or a breech-lock type. Modern camera lens mounts are of the bayonet type, because the bayonet mechanism precisely aligns mechanical and electrical features between lens and body, unlike screw-threaded mounts.

Lens mounts of competing manufacturers (Canon, Nikon, Pentax, Sony etc.) are always incompatible. In addition to the mechanical and electrical interface variations, the flange focal distance can also be different.

The flange focal distance (FFD) is the distance from the mechanical rear end surface of the lens mount to the focal plane.

Lens construction

Lens construction – a specific arrangement of elements and groups that make up the optical design, including type and size of elements, type of used materials etc.

Element - an individual piece of glass which makes up one component of a photographic lens. Photographic lenses are nearly always built up of multiple such elements.

Group – a cemented together pieces of glass which form a single unit or an individual piece of glass. The advantage is that there is no glass-air surfaces between cemented together pieces of glass, which reduces reflections.

Focal length

The focal length is the factor that determines the size of the image reproduced on the focal plane, picture angle which covers the area of the subject to be photographed, depth of field, etc.

Speed

The largest opening or stop at which a lens can be used is referred to as the speed of the lens. The larger the maximum aperture is, the faster the lens is considered to be. Lenses that offer a large maximum aperture are commonly referred to as fast lenses, and lenses with smaller maximum aperture are regarded as slow.

In low-light situations, having a wider maximum aperture means that you can shoot at a faster shutter speed or work at a lower ISO, or both.

Closest focusing distance

The minimum distance from the focal plane (film or sensor) to the subject where the lens is still able to focus.

Closest working distance

The distance from the front edge of the lens to the subject at the maximum magnification.

Magnification ratio

Determines how large the subject will appear in the final image. For example, a magnification ratio of 1:1 means that the image of the subject formed on the film or sensor will be the same size as the subject in real life. For this reason, a 1:1 ratio is often called "life-size".

Manual diaphragm

The diaphragm must be stopped down manually by rotating the detent aperture ring.

Preset diaphragm

The lens has two rings, one is for pre-setting, while the other is for normal diaphragm adjustment. The first ring must be set at the desired aperture, the second ring then should be fully opened for focusing, and turned back for stop down to the pre-set value.

Semi-automatic diaphragm

The lens features spring mechanism in the diaphragm, triggered by the shutter release, which stops down the diaphragm to the pre-set value. The spring needs to be reset manually after each exposure to re-open diaphragm to its maximum value.

Automatic diaphragm

The camera automatically closes the diaphragm down during the shutter operation. On completion of the exposure, the diaphragm re-opens to its maximum value.

Fixed diaphragm

The aperture setting is fixed at F/2.8 on this lens, and cannot be adjusted.

Number of blades

As a general rule, the more blades that are used to create the aperture opening in the lens, the rounder the out-of-focus highlights will be.

Some lenses are designed with curved diaphragm blades, so the roundness of the aperture comes not from the number of blades, but from their shape. However, the fewer blades the diaphragm has, the more difficult it is to form a circle, regardless of rounded edges.

At maximum aperture, the opening will be circular regardless of the number of blades.

Weight

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

Maximum diameter x Length

Excluding case or pouch, caps and other detachable accessories (lens hood, close-up adapter, tripod adapter etc.).

For lenses with collapsible design, the length is indicated for the working (retracted) state.

Weather sealing

A rubber material which is inserted in between each externally exposed part (manual focus and zoom rings, buttons, switch panels etc.) to ensure it is properly sealed against dust and moisture.

Lenses that accept front mounted filters typically do not have gaskets behind the filter mount. It is recommended to use a filter for complete weather resistance when desired.

Fluorine coating

Helps keep lenses clean by reducing the possibility of dust and dirt adhering to the lens and by facilitating cleaning should the need arise. Applied to the outer surface of the front and/or rear lens elements over multi-coatings.

Filters

Lens filters are accessories that can protect lenses from dirt and damage, enhance colors, minimize glare and reflections, and add creative effects to images.

Lens hood

A lens hood or lens shade is a device used on the end of a lens to block the sun or other light source in order to prevent glare and lens flare. Flare occurs when stray light strikes the front element of a lens and then bounces around within the lens. This stray light often comes from very bright light sources, such as the sun, bright studio lights, or a bright white background.

The geometry of the lens hood can vary from a plain cylindrical or conical section to a more complex shape, sometimes called a petal, tulip, or flower hood. This allows the lens hood to block stray light with the higher portions of the lens hood, while allowing more light into the corners of the image through the lowered portions of the hood.

Lens hoods are more prominent in long focus lenses because they have a smaller viewing angle than that of wide-angle lenses. For wide angle lenses, the length of the hood cannot be as long as those for telephoto lenses, as a longer hood would enter the wider field of view of the lens.

Lens hoods are often designed to fit onto the matching lens facing either forward, for normal use, or backwards, so that the hood may be stored with the lens without occupying much additional space. In addition, lens hoods can offer some degree of physical protection for the lens due to the hood extending farther than the lens itself.

Teleconverters

Teleconverters increase the effective focal length of lenses. They also usually maintain the closest focusing distance of lenses, thus increasing the magnification significantly. A lens combined with a teleconverter is normally smaller, lighter and cheaper than a "direct" telephoto lens of the same focal length and speed.

Teleconverters are a convenient way of enhancing telephoto capability, but it comes at a cost − reduced maximum aperture. Also, since teleconverters magnify every detail in the image, they logically also magnify residual aberrations of the lens.

Lens caps

Scratched lens surfaces can spoil the definition and contrast of even the finest lenses. Lens covers are the best and most inexpensive protection available against dust, moisture and abrasion. Safeguard lens elements - both front and rear - whenever the lens is not in use.